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ABSTRACT 

A design method is developed for including the effects of para- 
meter uncertainties in the design of linear control systems. The 
approach taken to this problem may be classified as a special case of 
the stochastic control problem. Thus, the formulation is based on the 
minimization of the expected value of a quadratic performance index 
defined in terms of the system state vector. The uncertainty in the 
value of the performance index is then the result of the statistical 
nature of the system parameters rather than a random input signal, 
It is shown that the expected value of the performance index may be 
written as a sum of two terms under the assumption of first order 
variations of the system state. The first of these terms expresses 
the nominal performance of the system when the system parameters 
assume their mean values. The second term represents the effect of 
the uncertainties on the expected value of the performance index, and 
is interpreted as an index of system sensitivity. The total performance 
index is minimized with respect-to designated free design parameters 
in a fixed configuration. The key to the numerical solution of tnis 
problem lies in using the phase-variable form of the system equations, 
Very efficient numerical techniques are developed for obtaining this 
solution using a gradient algorithm. The method is finally applied, 
with considerable success, to the design of two flight control systems, 
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Chapter 1. Introduction and Summarv 

1.1 Introduction 

It is well known that one of the principal reasons for using 

feedback in control systems is to reduce the effects of undesirable 

disturbances of various origins on the system performance. The most 

common disturbances of this type are unwanted inputs and variations 

of the static and dynamic characteristics of the system. 

It is important that the disturbance effects be accounted f c r  

in the design process in addition to achieving desirable response 

characteristic to input commands. A number of standard methods are 

available for controlling the effects of unwanted input signals, 

which may be deterministic or random in nature. Considerable effort 

has also been made over the past two decades to develop design 

techniques, which make it possible to achieve satisfactory system 

performance despite changes or uncertainties in the dynamic character- 

istics of the control system or its mathematical description. 

This effort has proceeded in two different directions, i,e, towards 

adaptive systems on the one hand and insensitive systems on the other, 

In the case of adaptive control systems adjustment can be 

made in the controller in order to cope with changes in the dynamics 

of the controlled member of the system. These adjustments can be 

made by detection of changes in the system response or as a function 

of changes in some environmental parameters, which affect the system 

in a known way. In contrast, the insensitive system should be eapakle 

of achieving satisfactory performance for all anticipated operating 

conditions without any adjustments of the controller characteristics, 

Deciding which of these two types of systems should be u.sed 

in a given application may not always be a simple one, since the 

differences in the capabilities of the two types have not been 



cl.early i d e n t i f i e d .  [401  It i s  a reasonable  assumption, however, 

tnac a c o n t r o l  system w i l l  always be requ i red  t o  e x h i b i t  a c e r t a i n  

degree of i n s e n s i t i v i t y  t o  smal l  v a r i a t i o n s  of i t s  dynamics,, wi thout  t h e  

need for any adjustments of i t s  parameters.  

T h e  s u b j e c t  of system s e n s i t i v i t y  focuses  on the 

d e s c r i p t i o n  and a n a l y s i s  of t h e  e f f e c t s  of v a r i a t i o n s  and i n a c c u r a c i e s  

ir t h e  system c h a r a c t e r i s t i c s  on i t s  performance. A s  pointed  o u t  i n  

Reference [421  t h i s  is  a problem which is  p e c u l i a r  t o  engineer ing 

desrgn,  because of t h e  d i f f e r e n c e s  which e x i s t  between t h e  mathematical 

model and t h e  a c t u a l  system. Thus, t h e  des igner  must concern 

h m s e l f  wi th  t h e  i n f l u e n c e  of i n a c c u r a t e l y  known system parameters 

on  t h e  6.esign. Such parameters commonly change t h e i r  va lues  over  a 

perlod of t ime,  a l though they may be assumed t o  be i n v a r i a n t  i n  t h e  

s y s t e m  des ign,  Manufacturing t o l e r a n c e s  and changes i n  t h e  o p e r a t i n g  

env~ronment  a r e  a l s o  sources  of u n c e r t a i n t y  which must be considered 

ir any c o n t r o l  system des ign.  

P, number of  very u s e f u l  d e f i n i t i o n s  and techniques  have been 

developed f o r  t h e  a n a l y s i s  of t h e s e  e f f e c t s  i n  l i n e a r  systems. The 

now c l a s s i c a l  d e f i n i t i o n  of system s e n s i t i v i t y  was given i n  Reference 

[ I ]  a s  t h e  change i n  t h e  closed-loop t r a n s f e r  func t ion  wi th  r e s p e c t  

t o  cnanges i n  t h e  t r a n s f e r  func t ion  of t h e  p l a n t .  This  d e f i n i t i o n  

of system s e n s i t i v i t y  can be used t o  compute t h e  changes i n  t h e  system 

frequency response due t o  s p e c i f i e d  changes i n  t h e  p l a n t .  I t  a l s o  

provides  a u s e f u l  r e l a t i o n s h i p  between t h e  s e n s i t i v i t y  of t h e  frequency 

response and t h e  loop g a i n  a t  any given frequency. An ex tens ion  of 

t h i s  d e f i n i t i o n  of m u l t i v a r i a b l e  systems is  given i n  Reference [ 6 ] .  

Dessgn methods f o r  achieving a frequency response which s a t i s f i e s  

s t a t e d  t o l e r a n c e s  have been developed i n  References [15] ,  [16] and 

$ 2 5 1 ,  The advantage of t h e s e  frequency domain methods i s  t h a t  t h e i r  

a p p i l c a t l o n  i s  n o t  r e s t r i c t e d  t o  smal l  parameter v a r i a t i o n s .  However, 



they  do r e q u i r e  t h a t  a l l  t h e  system specifications be s t a t e d  i n  terms 

of t h e  t o l e r a n c e s  on t h e  frequency response  o r  be  t ransformable  i n t o  

t h a t  form. The i r  u s e f u l n e s s ,  when t h e  t r a n s i e n t  t i m e  response  i s  of 

primary i n t e r e s t ,  i s  t h e r e f o r e  open t o  ques t ion .  D i f f i c u l t i e s  a r e  

a l s o  encountered i n  t h e  c a s e  of  non-minimum phase p l a n t s ,  when t h e  

r e l a t i o n s h i p  between t h e  ampli tude and phase of t h e  frequency response 

i s  no longer  unique. References [19] and [ 2 5 ]  demonstrate t h e  use  

of t h e s e  methods i n  t h e  des ign  of f l i g h t  c o n t r o l  systems.  

The emphasis on r o o t  locus  techniques  i n  c o n t r o l  system des lgn 

l e d  t o  t h e  d e f i n i t i o n  of t h e  closed-loop po le  s e n s i t i v i t i e s  a s  t h e  

d e r i v a t i v e s  of  t h e s e  po les  wi th  r e s p e c t  t o  t h e  open-loop g a i n ,  po les  

and zeros .  L261  1461  By computing t h e s e  s e n s i t i v i t i e s  f o r  any g m n  

closed-loop p o l e  it i s  p o s s i b l e  t o  determine t h e  incrementa l  chacge i n  

i t s  l o c a t i o n  due t o  v a r i a t i o n s  i n  t h e  open-loop parameters .  These 

s e n s i t i v i t i e s  and t h e  a s s o c i a t e d  techniques  f o r  t h e i r  computation 

a r e  powerfui t o o l s  f o r  ana lyz ing  t h e  e f f e c t  of system changes on t h e  

closed-loop r o o t s .  A s  such they can a l s o  be used i n  t h e  des ign  process  

t o  p r e d i c t  t h e  e f f e c t s  of  va ry ing  any f r e e  des ign parameters  011 t h e  

c l o  ed-loop behaviour.  Techniques f o r  achieving favourab le  c losed-  

loop s e n s i t i v i t i e s  have been developed i n  References [16] ,  [ 1 7 ] ,  and 

[ 2 0 ] .  The i r  a p p l l c a t l o n  i s  most u s e f u l  i n  t h e  c a s e  of systems w i t b  

r e l a t i v e l y  few dominant modes whose l o c a t i o n  i n  t h e  complex p lane  can 

be s p e c i f i e d  i n  terms of bounded a r e a s .  By s t r a t e g i c a l l y  l o c a t i n g  

t h e  s i n g u l a r i t i e s  of  t h e  compensating components, t h e  movement of ehe 

dominant system r o o t s  due t o  open-loop changes can be r e s t r i c t e d ,  

The common c h a r a c t e r i s t i c s  of t h e  des ign  methods i n  t h e  domain 

of r e a l  and complex f requenc ies  a r e  t h a t  h igh feedback g a i n  i s  nsed 

i n  t h e  a p p r o p r i a t e  frequency band t o  suppress  t h e  e f f e c t  of changes 

which occur  i n  t h e  p l a n t ,  i . e .  i n  t h e  forward path .  I t  i s  then  



implicitly assumed that the properties of the compensation are highly 

stable compared with the plant, since the high feedback gain has the 

effect of amplifying any changes occurring in that path. The problems 

of system stability and noise are considered as constraints, which 

determine the character of the compensation at high frequency. The 

sensitivity problem is, furthermore, separated from the achievement 

of an acceptable nominal response by constraining the response in the 

important frequency region. Although these techniques have been 

demonstrated to satisfy requirements of the type mentioned above, one 

suspects that the method of separating the sensitivity problem from 

the remaining system specifications may result in unnecessarily 

complicated systems. An excellent review of these techniques is 

available in Reference [12] . 
The increasing importance of state-space and optimal control 

techniques has resulted in numerous papers on system sensitivity in 

the time domain. Much of this research is based on the use of the 

sensitivity functions, which are defined as the derivatives of the 

system state variables with respect to the variable system parameter 

under consideration. 1411 The sensitivity functions are therefore 

measures of the deviation of the system response from its nominal 

due to variations of the corresponding parameter. A number of papers 

121 g [41 t I71 r [81 r [I0] t L21] 1 [221 [231 f [361have appeared in recent years 

on the application of a quadratic sensitivity index, defined in terms 

of the sensitivity functions, to the optimal design of systems which 

are subject to variations of some plant parameters. This sensitivity 

index is added to the quadratic performance index, which has been 

chosen to optimize the system's nominal response. By minimizing this 

s-m~ with respect to the available control inputs it is hoped that the 

res~lting system design exhibits sensitivity properties, which are 

more favourable than would have been the case if the sensitivity index 

had not been included. The difficulty arises in solving for the 



optimum c o n t r o l  i n p u t s  because o f  t h e  d e s i r e  t o  determine t h e s e  inputs 

i n  t h e  form of feedbacks of t h e  system s t a t e  v a r i a b l e s .  The v a r i a t i o n s  

of t h e s e  s t a t e  v a r i a b l e s  from t h e i r  nomina1:responses then  r e s u l t  

i n  corresponding v a r i a t i o n s  of t h e  feedback c o n t r o l  s i g n a l s .  If the  

form of t h e s e  s i g n a l s  remains t o  be determined,however,  t h e  e f f e c t s  of 

t h e  c o n t r o l  v a r i a t i o n s  on t h e  system s e n s i t i v i t y  func t ions  cannot  be 

determined.  

For t h i s  r eason ,  it i s  necessary  t o  s p e c i f y  t h e  form of t h e  

feedback c o n t r o l ,  which i s  u s u a l l y  taken t o  be  a  l i n e a r  feedback of 

a l l  the system s t a t e s  and t h e i r  s e n s i t i v i t y  f u n c t i o n s  w i t h  t h e  values 

of t h e  ga ins  f r e e  t o  be  chosen. Some f u r t h e r  assumptions must a l so  

be  made about  t h e  second o r d e r  e f f e c t s  of t h e  parameter  v a r i a t i o n s  on 

t h e  system response.  [371  Because of t h e  need t o  feedback t h e  s e n s i t i v i t y  

f u n c t i o n s  i n  a d d i t i o n  t o  t h e  system s t a t e s ,  t h e  r e s u l t i n g  system 

des ign  becomes very  complex even f o r  a  s imple  system and has  i n  s o m e  

cases  l e d  t o  inconc lus ive  r e s u l t s .  [ 361  This  complexity i s  avoided by 

fo rmula t ing  t h e  c o n t r o l  a s  a  func t ion  of t h e  s t a t e  v a r i a b l e s  o n l y ,  

which has  been a p p l i e d  w i t h  some success  t o  t h e  des ign  of an a t t i tx .de  

c o n t r o l  system of a  boos te r .  [151 [ 3 3 1  

The b a s i c  problem w i t h  us ing  t h e  s e n s i t i v i t y  func t ions  f o r  ehe 

d e f i n i t i o n  of an index of s e n s i t i v i t y  i s  t h a t  a  s e p a r a t e  set  of these 

f u n c t i o n s  must be de f ined  f o r  each v a r i a b l e  parameter ,  which i s  t o  be 

considered .  This  means t h a t  it i s  very  d i f f i c u l t  t o  o b t a i n  t h , e  numerical 

s o l u t i o n  f o r  m u l t i p l e  parameter  v a r i a t i o n s .  AS a r e s u l t ,  only s i n g l e  

parameter  v a r i a t i o n s  have been considered  i n  t h e  a p p l i c a t i o n  of t h e  

methods j u s t  desc r ibed .  The cho ice  of  t h e  weight ing  mat r ix  i n  t h e  

s e n s i t i v i t y  index i s  a l s o  open t o  ques t ion ,  s i n c e  no sys temat ic  

method has  been proposed f o r  i t s  s e l e c t i o n .  Very l i t t l e  e f f o r t  has 

been made t o  r e l a t e  t h e  r e s u l t s  of us ing  t h e  s e n s i t i v i t y  index t o  

r e a l i s t i c  s p e c i f i c a t i o n s  on t h e  t i m e  response  of t h e  system. 



R somewhat d i f f e r e n t  approach t o  t h e  problem of system s e n s i t i -  

vity was proposed i n  Reference [ 2 4 1 ,  which formulated a s e n s i t i v i t y  

index i n  terms of t h e  mean square dev ia t ion  of t he  system response t o  

changes i n  a system parameter. The method s u f f e r s  from t h e  numerical 

d i f f i c u l t i e s  encountered i n  determining the  type of compensation 

networks t h a t  a r e  required t o  minimize t h e  s e n s i k i v i t y  index. A 

mare general  approach i s  taken i n  Reference [ 4 3 ] ,  which formulates 

t he  prcsbllem a s  an optimal s t o c h a s t i c  con t ro l  problem with changes 

i n  the  system parameters described a s  random va r i a t i ons .  However, 

t h e  r e s u l t i n g  optimal con t ro l  i s  open-loop and cannot,  i n  general ,  

be 2ut i n t o  a feedback form. Parameter i d e n t i f i c a t i o n  techniques have 

also been appl ied recen t ly  t o  t he  problem of uncer ta in  parameters i n  

noc-linear cont ro l  systems 
[ 3 8 I 

F ina l ly ,  t h e  s e n s i t i v i t y  problem has been analyzed i n  terms 

of ehe e f f e c t  of parameter va r i a t i ons  on t he  value of the  performance 

index I s '  12*]  ' i 29  I .  S e n s i t i v i t y  ind ices  based on the  va r i a t i on  of 

t h e  performance index have been defined i n  References [ 3 ]  and [451 

w b t n  app l i ca t i on  t o  simple con t ro l  systems. Both of t he se  s tud i e s  

are preoccupied with t he  value of t he  performance index and i t s  

d e v ~ a t l o n  due t o  t h e  parameter va r i a t i ons ,  bu t  f a i l  t o  i n t e r p r e t  t h e  

impact on the  system time response o r  how t h e i r  techniques may be 

applied t o  z e a l i s t i c  design problems. 

The ob jec t ive  of t h i s  t h e s i s  i s  t o  develop a s e n s i t i v i t y  design 

method i n  t h e  time domain, which a l l e v i a t e s  some of t he  d i f f i c u l t i e s ,  

whlch have been encountered i n  t h e  s tud i e s  c i t e d  above. In  p a r t i c u l a r ,  

it 1s c l e a r  t h a t  i f  the  so lu t i on  of p r a c t i c a l  design problems i s  t o  

be attempted it i s  necessary t o  develop computational techniques,  

w k . ~ c h  can be appl ied t o  high order  systems e f f i c i e n t l y  and i n  a 

sr.ralghtforward manner. A systematic method f o r  choosing the  measure 

of s e n s r t i v i t y  i s  a l s o  important f o r  t he  same reasons.  



Furthermore, it should  be  p o s s i b l e  t o  i n c l u d e  any number of  v a r i a b l e  

des ign  parameters  and t h e s e  should n o t  be r e s t r i c t e d  t o  parameters  

of t h e  system p l a n t .  I t  i s  a l s o  d e s i r a b l e  t h a t  t h e  complexity of t h e  

system b e  l e f t  t o  t h e  d e s i g n e r  a s  opposed t o  a p r i o r i  s p e c i f i c a t i o n s  

of  a l l  feedback loops.  

1.2 Problem Approach 

The approach which i s  t aken  h e r e  t o  t h e  problem of s e n s i t i v i t y  

i n  c o n t r o l  system des ign  may b e  c l a s s i f i e d  a s  a s p e c i a l  c a s e  of 

s t o c h a s t i c  c o n t r o l  system des ign.  Thus, it i s  based on t h e  no t ion  

t h a t  t h e  e f f e c t  of random d i s t u r b a n c e s  on t h e  system performance may 

be accounted f o r  by d e f i n i n g  t h e  index of performance a s  t h e  expected 

va lue  o f  t h e  f u n c t i o n a l  which d e s c r i b e s  t h e  system performance i n  t h e  

absence of t h e s e  d i s t u r b a n c e s .  The assumption i s  made t h a t  t h e  

system i s  desc r ibed  by l i n e a r  d i f f e r e n t i a l  equa t ions  w i t h  c o e f f i c i e n t s  

whose va lues  may be i n a c c u r a t e l y  known o r  a r e ' s u b j e c t  t o  changes, 

which a r e  slow r e l a t i v e  t o  t h e  response t i m e  of t h e  system. These 

c o e f f i c i e n t s  which w i l l  be  r e f e r r e d  t o  a s  des ign  parameters ,  may 

t h e r e f o r e  be  cons idered  t o  be t i m e  i n v a r i a n t  and s t a t i s t i c a l l y  

d i s t r i b u t e d  about  some nominal va lues .  I n  a d d i t i o n ,  t h e  fo l lowing 

assumptions a r e  made : 

(1) t h e  v a r i a t i o n s  o f  t h e  des ign parameters  have a j o i n t  

p r o b a b i l i t y  d i s t r i b u t i o n  w i t h  known f i r s t  and second 

o r d e r  s t a t i s t i c s  

(2 )  t h e  parameter  v a r i a t i o n s  a r e  smal l  enough s o  t h a t  t he  

corresponding d e v i a t i o n s  of t h e  system response  may 

be  desc r ibed  by a f i r s t  o r d e r  approximation 

( 3 )  t h e  performance index i s  a q u a d r a t i c  i n t e g r a l  i n  t e r m s  

of  t h e  system s t a t e  v e c t o r  



(4) t h e  c o n f i g u r a t i o n  of t h e  system i s  s p e c i f i e d  a  p r i o r i  

wi th  des ignated f r e e  des ign parameters,  which may be 

optimized 

(5) t h e  system s p e c i f i c a t i o n s  may be s t a t e d  i n  terms of a  

d e s i r a b l e  t i m e  response t o  a  s t e p  i n p u t  

.&ssurnption (2) i s  necessary  i n  o r d e r  t o  make t h e  computat ional  t a s k  

tractable and has  been used i n  most of t h e  s t u d i e s  of t i m e  domain 

s e n s i t i v i t y ,  which have been reviewed i n  t h e  course  of t h i s  work. I ts  

effect is t o  al low a  c e r t a i n  degree of s e p a r a t i o n  of t h e  equakions 

d e s c r i b i n g  t h e  nominal system response from t h e  equat ions  d e s c r i b i n g  

its d e v i e t i o n s .  The use  of t h e  q u a d r a t i c  performance index i s  j u s t i f i e d  

on t h e  b a s i s  of i t s  widespread acceptance i n  c o n t r o l  system des ign.  

A n e w  dimension has  a l s o  been added t o  i t s  use fu lness  i n  s a t i s f y i n g  

specific response  requirements by Reference [31], which provides  a  

sys temat ic  technique f o r  s e l e c t i n g  t h e  s t a t e  weighting matr ix .  The 

integral square  e r r o r  c r i t e r i o n  has  a l s o  been found t o  be an e f f e c t i v e  

t o o l  for t h i s  purpose. [ 4 7 1  

~ s s u m p t i o n  ( 4 )  i s  made i n  t h e  i n t e r e s t  of avoiding t h e  

problems involved i n  determining t h e  e f f e c t  of parameter  v a r i a t i o n s  

on a y e t  t o  be  determined c o n t r o l  i n p u t ,  i n  a d d i t i o n  t o  a l lowing t h e  

des igner  t o  l i m i t  t h e  complexity of t h e  system. The formulat ion of 

the  f i x e d  c o n f i g u r a t i o n  technique fo l lows c l o s e l y  t h e  development 

given i n  Reference [311, which i s  based on t h e  use of t h e  s t a t e  

equa t ions  of t h e  t r a n s i e n t  response of t h e  closed-loop system. The 

assumption t h a t  t h e  system response s p e c i f i c a t i o n s  be s t a t e d  i n  t e r m s  

of a model s t e p  response i s  a  m a t t e r  of convenience f o r  determining 

t he  value of t h e  s t a t e  weighting mat r ix  b u t  does n o t  restr ict  t h e  

a p p l i c a t i o n  of t h e  method t o  any p a r t i c u l a r  choice  of t h i s  weighting 

matrix. 



The des ign  method i s  developed f o r  a  s i n g l e  inpu t /ou tpu t  linear 

c o n t r o l  system, whose closed-loop c h a r a c t e r i s t i c s  a r e  r ep resen ted  by 

a  t r a n s f e r  f u n c t i o n  of t h e  form: 

The c o e f f i c i e n t s  of t h e  numerator and denominator t h e r e f o r e  become 

f u n c t i o n s  of  t h e  system des ign  parameters:  

where - a  and b  - c o n t a i n  t h e  c o e f f i c i e n t s  of  Equation (1.1), and - p and - < 
a r e  t h e  v e c t o r  r e p r e s e n t a t i o n s  of t h e  f r e e  and v a r i a b l e  des ign  

parameters  r e s p e c t i v e l y .  Ac tua l ly ,  - p and - 5 may c o n t a i n  common 

e lements ,  which means t h a t  f r e e  des ign  parameters  wi th  u n c e r t a i n t i e s  

o r  v a r i a t i o n s  about  a  nominal va lue  can be cons idered .  A s imple  b u t  

convenient  method f o r  hand l ing  t h i s  c a s e  i s  developed i n  t h e  body of 

t h e  t h e s i s  whereby t h e  f r e e  des ign  parameter  i s  rep resen ted  a s  a 

product  of i t s  nominal va lue  and a  random parameter  w i t h  t h e  mean 

va lue  of  u n i t y .  

The t r a n s f e r  f u n c t i o n  of  Equation (1.1) can be  transformed 

i n t o  f i r s t  o r d e r  s t a t e  equa t ions  i n  a  number of  ways. A p a r t i c u l a r l y  

convenient  form which i s  used i n  t h i s  work i s  given by: 

where t h e  f i r s t  element of y - i s  i d e n t i c a l  t o  t h e  system o u t p u t ,  The 

system mat r ix  i s  i n  t h e  phase-var iable  form, i .e.  con ta ins  only ones 



and zeros except for the last row which consists of the denominator 

coeff.ici.ents in Equation (1.1). The input vector, - c, is a function 

of both the numerator and denominator coefficients. This is sometimes 

referred to as the standard observable realization of the transfer 

function, The transient response of he system may be obtained from 

Equation (1.2), assuming a unit step input, in the form: 

where x is the difference between y and its steady-state value and - - 
x is a function of the transfer function coefficients. This is the -0 

form used in Reference [321 to represent the system response, although 

its development differs somewhat from the one given in this thesis. 

l,3 Synthesis of Results 

The problem of parameter uncertainty or variation has been 

formulated as the minimization of the expected value of a quadratic 

performance index of the form: 

where Q - is a constant positive semi-definite weighting matrix. By 

using the assumption about the linearity of the deviations of the 

response due to parameter variations, it was shown that this 

performance index can be written as the sum of two terms: 



where 5, represents the nominal system response based on the r.ean 

values of the variable design parameters and 6x - denotes the first 
order deviation of the response due to a variation of the variable 

design parameters. The first of these terms expresses the nominal 

performance of the system. The second term represents the effect 

of the parameter variations on the performance and can be interpreted 

as an index of system sensitivity. Thus, this formulation relates 

the stochastic approach to the technique of adding a sensitivity index 

to the performance index. The form of the sensitivity index is also 

completely specified as a function of the total deviation of the system 

state due to the simultaneous variation of all the variable design 

parameters. 

The problem of computing the numerical value of J, given the 

first and second order statistics of the variable design parameters,? 

is very difficult in general. This is so mainly because it is 
-- 

necessary to obtain the integral of the covariance matrix 6x 6x T 
- - 

over all time as seen from Equation (1.5). In most cases, this would 

require the numerical integration of the matrix differential equation 

describing the propagation of this matrix in time. The phase-variable 

form of the state equations, however, allows this integral to be 

obtained as the solution of n+2 linear algebraic matrix equations 

where n is the order of the system. Specifically, these equations 

may be written : 

T - 
&* E+ =A_, - + - U (Z.) -1 + 6f0 = - 0 



where - X and - denote the two integral terms in Equation (1.5) and 

t? is a fianction of the unknown gi matrices as indicated. The - 

remaining terms are all functions of the system coefficients and the 

covarianize matrix of the variable design parameters. These terms are 

evaluated for the nominal values of these parameters as indicated 

by the asterisk. 

T h e  first two of these equations form a special case of the 

w e 9 1  known Riccatti equation. The n remaining matrix equations 

express the effect of the correlation between the various terms of 6x - 

and 6a - on the solution of the sensitivity index, where 6a - represents 

the variation of the system's characteristic coefficient vector. It 

4s not clear that these equations can be solved in any convenient 

way. R numerical integration technique has typically been used to 

o b t a i n  the solution of the steady-state Riccatti equation. This 

would be a prohibitive computational task in this case for any 

practical system in view of the number of equations and their 

interdependence. 

The key to the simplification of the numerical solution of 

Equations (1.6) lies in the phase-variable form of the system matrix 

A, - By writing the first two equations column by column an iterative 

relati~nship between (n-1) of the column vectors of the solution 

matrices is obtained. The form of these column vector equations is 

slrn;lar to that of the equations for Zi in Equation (1.6), which was 

also obtained by taking advantage of the form of the system matrix. 

By successive substitution of these iterative expressions, explicit 

expressions are obtained for the unknown matrices in Equation (1.6). 

A slngle matrix inversion of an (nxn) matrix is required to obtain 

all these solutions. 

Another n+2 matrix equations are added to the seb sf 

equations which must be solved in order to determine the gradient of 



- 
J for any given set of the free design parameters. Their solutions 

are obtained in a similar way to those of Equations (1.6). A steepest 

descent algorithm is then used to determine the local minimum of 3, 

This means that 2(n+2) matrix equations containing (nxn) matrices must 

be solved for each iteration of the algorithm. Highly efficient 

computer programs have been developed for this purpose. In most 

practical problems the first solution of Equation (1.6) is not 

sufficiently accurate due to round-off errors. A very successful 

iterative process has been used to refine the solutions to an 

accuracy of better than one part per lo1' using double precision. 

The design method described above has been applied to design 

examples using the model performance index developed by Rediess. CSSl 

The advantage of this index over other quadratic indices is that its 

weighting matrix can be determined in a systematic way, once the 

transfer function of the desired model response has been chosen, A 

new interpretation of this performance index is given in this thesis, 

where it is shown that the model performance index may be written as: 

where i(t) is the scalar input to an error model describing the 

difference in the responses of the system and the reference model 

which describes the desired system response. In its original 

derivation it is necessary, in general, to add a second term to the 

model performance index when the system transfer function contains 

zeros. This term is defined as a weighted quadratic form of the error 

in the initial state as compared with the model's initial state, 

Some ambiguity is caused by the arbitrary weighting of this tern 

relative to the integral of Equation (1.7). A technique which 



eliminates the need for this second term of the performance index 

has been developed using the new interpretation. This is accomplished 

by an expansion of the system order and by requiring the transfer 

function of the reference model to have a number of excess poles over 

zeros  which is equal to or smaller than that of the system. 

The basic approach which is taken in applying the present 

design method may be stated in terms of the following steps: 

(1) the configuration is chosen with the objective of 

obtaining a satisfactory nominal response 

( 2 )  the free design parameters are optimized by determining 

the minimum value of the nominal performance index, i.e. 

assuming that all the design parameters are known and 

invariant 

( 3 )  the expected value of the performance index is minimized 

for a specified value of the parameter covariance matrix 

and the solution compared with the solution of step number (2) 

In most cases step number (3) will decrease the value of the sensiti- 

vity lndex when compared with the sensitivity index achieved by step 

numbor (2). The amount of reduction can be controlled to some extent 

by varying the effect of the uncertainty on the performance index. 

This is d.one most conveniently by scaling the covariance matrix of 

the variable parameters, i.e. increasing or decreasing the amount of 

uncertair~ty in the values of these parameters. The relationship between 

the individual parameter variations is unaffected by the scaling. 

In most practical problems the improvement in the sensitivity 

index by the third design step is achieved by some deterioration of 

the nominal performance index from that achieved by step number (2). 

It is desirable that this deterioration be small relative to the 



change in the sensitivity index in order to achieve an overalL 

improvement in the system response, which is expressed by the total 

change in expected value of the performance index. In some picoblens, 

however, it may be of more importance to reduce the sensitivity of 

the system than achieving the desired response characteristics. T h i s  

is clearly the case when the variation of a design parameter may result 

in an unstable response. If the design which is obtained by step 

number (3) is still too sensitive, i.e. has too large deviations for 

the specified parameter variations, then a new configuration inust be 

chosen and the process repeated. It is emphasized that the performance 

indices are only tools which may be used to achieve the desired 

results. Thus, the system design must always be judged on the basis 

of comparison of its response with the original specifications, The 

relative changes in the performance indices can, however, be used to 

estimate the corresponding changes in the actual system performance, 

The sensitivity design method presented here has been applied 

to the design of two flight control systems. The first of these 1s 

an attitude control system of a flexible booster whose bending 

characteristics are inaccurately known. The nominal design, which 

was obtained without any regard for the uncertainties, was found 'co 

be very sensitive to changes in the bending frequency and to a lesser 

extent in the bending mode slope. This sensitivity was significantly 

reduced by application of the described technique resulting in a 

stable response for a much larger range of parameter variations rhan 

achieved by the nominal design. The second system is an attitude 

control system of a high performance aircraft with two structural 

bending modes included in the vehicle dynamics. The frequencies cf 

the bending modes and the dimensional coefficients of the rigid body 

dynamics are all described by normal distributions about their mean 

values. The nominal design of this system was found to provide 



insufficient damping of the first bending mode. By taking advantage 

of the system's sensitivity to changes in the bending frequency it 

was found possible to significantly reduce the effect of this mode on 

the resptnse. No improvement could be obtained in the system's 

sensitivity to changes in the dimensional coefficients. The nominal 

design wi3S found to be inherently insensitive to these changes as 

indicated by a small value of the sensitivity index relative to the 

nominal performance index. 

1-4 Conclusions 

The following conclusions have been reached in this research: 

(I) It has been shown that the sensitivity design method, 

developed on the basis of minimizing the expected value 

of a quadratic performance index, can be used to design 

control systems which are less sensitive to uncertainties 

in the system parameters than the designs obtained by 

minimizing the corresponding deterministic performance 

index, using the nominal values of the system parameters. 

( 2 )  The expected value of the quadratic performance index 

may be written as the sum of two terms. The first of 

these represents the nominal system performance and the 

second term may be interpreted as an index of system 

sensitivity. 

( 3 )  The computational difficulties which have been associated 

with previous sensitivity design methods have been 

alleviated allowing any number of correlated parameter 

variations to be handled with ease. 



(4) The improvement in the overall performance of the system 

can be rated by a parameter, p, expressing the trade-off 

between the change in sensitivity and the change in 

nominal performance. A low value of p indicates that 

the reduction in sensitivity is achieved at a high cost 

in terms of changes in the nominal system performance, 

For a large p the opposite holds true. 

(5) By computing the sensitivity index corresponding to 

individual system parameters the relative effect of 

uncertainties in these parameters on the system perfornance 

can be measured. The values of the sensitivity indices 

can be used to estimate the allowable tolerances of these 

parameters. 

1.5 Recommendations for Further Research 

It is felt that the sensitivity method presented in this thesis 

may be applicable to a much wider range of problems than have been 

considered here. A broad investigation of its potential in c o n t r a 1  

system design would, therefore, be of interest. In the case of the 

model performance index, it would be desirable to investigate further 

the effect of the model on the resulting solution. It has been 

found, for instance, that the sensitivity of the nominal solution may 

vary considerably depending on what type of model is used. The 

application of the sensitivity method to other quadratic performance 

indices is also an open area for further study. 

FinaJly, the computer programs which have been written in the 

course of this work could be developed into a versatile design 

package based on the minimization of any desired quadratic performance 

index with respect to the free design parameters of a linear, fixed 

configuration control system. A relatively moderate effort would he 

required for this purpose. 





Cha~ter 2. Control Svstem Sensitivitv 

2.1 Introduction 

The area of system sensitivity, which will be addressed here, 

is concerned with the effects of changes in the static and dyxiamic 

characteristics of the system on its response to specified inputs, 

These changes can often be described in terms of variations of some 

system design parameters, which may represent actual changes :Ln the 

system characteristics or inaccuracies in their knowledge. These 

variations are typically assumed to be time invariant over the time 

interval of interest, with a specified probability distribution, 

Some fundamental definitions of system sensitivity have been 

developed in the literature in order to systematically analyze the 

effects of variations of this type. It is plausible that the definition 

of sensitivity which is most useful in each situation depends to a 

great extent on the form in which the system performance specifications 

are expressed. Accordingly the three basic definitions of system 

sensitivity are given in the time domain and in the frequency domain 

in terms of real and complex frequencies. These are, respectively: 

- the sensitivity functions, which are the derivatives 
of the system state variables with respect to the 

variable design parameter 

- the transfer function sensitivity, expressing 

differential changes in the system transfer function 

due to variations of some design parameters 

-- the sensitivity of closed-loop poles to changes in 

the open-loop static sensitivity, poles and zeros 

As the objective of this thesis is to develop a practical 

method for including the problem of system sensitivity in the design 



process, it is  a p p r o p r i a t e  t o  cons ide r  t h e s e  d e f i n i t i o n s  of system 

s e n s i t i v i i t y  i n  some d e t a i l .  The i r  a p p l i c a t i o n  t o  c o n t r o l  system 

deslgn will be examined f o r  a  s i n g l e  inpu t /ou tpu t  system of t h e  type  

shown i n  F igure  2.1. 

F igure  2.1. S i n g l e  inpu t /ou tpu t  system. 

T h e  p l a n t ,  which i s  t o  be  c o n t r o l l e d ,  i s  represen ted  by P ( s ) ;  G l ( s )  

and G Cs) a r e  t h e  t r a n s f e r  f u n c t i o n s  of t h e  c o n t r o l l e r  components. I t  
2 

i s  assume13 t h a t  t h e  parameter  changes may occur i n  any of  t h e s e  

elements.  

Not s u r p r i s i n g l y ,  t h e  t h r e e  types  of system s e n s i t i v i t y  a r e  

i n t e r r e l a t e d  a l though t h e  r e l a t i o n s h i p  i s  n o t  n e c e s s a r i l y  s imple.  

2 - 2  Time Domain S e n s i t i v i t y  

System s p e c i f i c a t i o n s  i n  t h e  t i m e  domain have been emphasized 

i n  recent y e a r s  by t h e  i n c r e a s i n g  use  of  s t a t e - s p a c e  and opt imal  

c o n t r o l  techniques  i n  t h e  des ign  of c o n t r o l  systems.  S p e c i f i c a t i o n s  

of tnis t ype  a r e  b a s i c  i n  t h e  s e n s e  t h a t  it i s  by obse rva t ion  of t h e  

t i m e  behaviour of  t h e  system v a r i a b l e s  t h a t  one judges t h e  a b i l i t y  

of the c o n t r o l  system t o  perform i t s  func t ion .  Thus, t h e  common 

c h a r a c t e r i s t i c  of t h e s e  s p e c i f i c a t i o n s  i s  t h a t  they d e s c r i b e  t h e  

d e s i r a b l e  behaviour of t h e  system s t a t e  v a r i a b l e s  w i t h  va ry ing  degrees  

of complexity. For i n s t a n c e ,  t h e  system response  may on ly  be  requ i red  

t o  be s t a b l e ,  o r  it may be  completely p r e s c r i b e d  a s  a  f u n c t i o n  of  t i m e .  



The s e n s i t i v i t y  f u n c t i o n  has  been found t o  be  a useful t o o l  f o r  

de termining t h e  e f f e c t  of smal l  parameter  v a r i a t i o n s ,  o r  u n c e r t a i n t i e s ,  

on t h e  system t i m e  response.  This  f u n c t i o n  i s ,  i n  g e n e r a l ,  defined i n  

terms of t h e  system s t a t e  v e c t o r .  The corresponding s t a t e  equat ion  

may be  ob ta ined  from t h e  t r a n s f e r  f u n c t i o n  of a  s i n g l e  inpu t /ou tpu t  

system which i s  w r i t t e n  i n  t h e  fo l lowing form: 

One p o s s i b l e  s t a t e - s p a c e  r e a l i z a t i o n  of t h i s  t r a n s f e r  f u n c t i o n  i s  given 

by : 

where y i s  an n-dimensional s t a t e  v e c t o r ,  and A i s  an nxn system matrix - - 

i n  t h e  phase v a r i a b l e  form: 

and t h e  elements of  - c  a r e  given by t h e  fo l lowing equa t ion :  



1 < i < n-m - 

n-m < i < n - - 

where it i s  assumed t h a t  m < n, i . e .  t he  system t r a n s f e r  funct ion has 

a& least one more pole  than zeros. This i s  sometimes r e f e r r ed  t o  a s  

the standard observable r e a l i z a t i o n  of t h e  t r a n s f e r  funct ion given by 

Equation ( 2.1) . 
The s e n s i t i v i t y  funct ion of t h e  s t a t e  vec tor  with respec t  t o  a  

single va r i ab l e  parameter, i s  an n-dimensional vector  funct ion defined 

by " 

where 5 denotes t he  va r i ab l e  parameter. The d i f f e r e n t i a l  equation 

fo r  - c(t) i s  obtained by d i f f e r e n t i a t i n g  Equation ( 2 . 2 )  with r e spec t  

t o  5 

where it i s  assumed t h a t  u ( t )  i s  an ex t e rna l  i npu t  and i s ,  there fore ,  

n o t  a f f ec t ed  by t h e  parameter change. I f  u ( t ) ,  on t h e  o the r  hand, i s  

a  function of t he  system s t a t e ,  a s  i n  t h e  case of a  closed-loop 

feedback, t h i s  equation is: 

En order t o  compute - a ( t )  f o r  t h i s  closed-loop system, t h e  r e l a t i onsh ip  

between u ( t )  and - y (t) must, t he re fo re ,  be known. 



This poses a dilemma, when the objective is to determine the 

control input that optimizes a performance index containing - a ( t ) ,  The 

difficulty is usually avoided by specifying the functional re]-ationship 

of u(t) and the system variables. 

2.2.1 Sensitivity Index 

The use of terms such as high or low system sensitivity is 

rather meaningless, unless a well-defined quantitative measure of 

this sensitivity is being referred to. 

The sensitivity vector function, - o(t) , can be used to define a 
general quadratic index of the system sensitivity over a specified 

time interval, due to changes in a single design parameter: 

where - S is an arbitrary positive semi-definite weighting matrix, which 

can be chosen consistent with the overall system requirements. When 

two or more simultaneous parameter variations are considered, a 

sensitivity function corresponding to each parameter must be computed, 

A general sensitivity index can then, for example, be defined in 

terms of the extended sensitivity vector: 

-T T 3: T 
(t) = l g1 , g2 , ..., a (t) I - -k 

which is an nak dimensional vector containing all the elements of the 

sensitivity vector functions corresponding to k parameter variations. 

The sensitivity index then becomes: 



- 
where S is an (nok) x(n*k) positive semi-definite matrix. - 

In order to compute the value of Js as expressed by Equation 

62-91, it is necessary to solve Equation (2.5) k times, i.e. once for 

each parameter variation. This difficulty can be avoided by using 

the first order variation of the state in defining the sensitivity 

index, instead of the sensitivity functions. The choice of the 

weighting matrix is also simplified in this case. This index can be 

written in the form: 

where S is an nxn weighting matrix and dy(t) is the deviation of the - - 
state due to a specified variation of all the variable parameters. 

A sensitivity index of this form has the disadvantage of 

depecding on the actual deviation of the system state rather than its 

derivatives. Consequently it must be kept in mind that Js as defined 

by Equation (2.10) depends on the specified parameter variation. 

The equation describing dy(t) - is obtained by taking the first 

order varFation of Equation (2.2): 

where u(t) is assumed to be an external input, which is independent 

of the parameter variations. Thus, only one differential equation 

m u s t  be solved in order to compute the value of Js, as given by 

Equation (2.10) ,  regardless of the number of parameter variations 

involved. 

The assumption here is, that a representative set of parameter 

varsations can be determined for the computation of 6y(t). - As an 

example, worst case conditions could be used for this purpose. This 



may appear to be a limitation of the sensitivity index defined by 

Equation (2.101, but some judgment of the relative variations of 
" 

these parameters would also have to be made when choosing the - S 

weighting matrix in Equation (2.9). When only a single parameter 

variation is considered the sensitivity indices of Equations ( 2 , 9 b  

and (2.10) are actually equivalent, since in this case: 

In many instances, the variations of the parameters can be 

described by a statistical distribution, in which case the expected 

value of the sensitivity index may be used: 

where the bar indicates the ensemble average of the quantity. A 

sensitivity index of this type was proposed by Mazer [241, whose 

definition is given in terms of the first component of 6y(t), - which 

represents the variation of the output response. 

Example 2.1 

The characteristics of a sensitivity index of the type given by 

Equation (2.9) or (2.10) is demonstrated by a simple example. Consider 

the third order closed-loop system shown in Figure 2.2. 

3. 

Figure 2.2 Third order system 



T h e  open-loop s t a t i c  s e n s i t i v i t y ,  SOL, i s  taken t o  b e  t h e  

v a r i a b l e  parameter .  SOL i s  a l s o  t h e  f r e e  des ign  parameter ,  i .e .  i t s  

nominal va lue  can be  chosen by t h e  des igner .  The s e n s i t i v i t y  f u n c t i o n  

of the o u t p u t  i s  t h e n  g iven by: 

can be used i n  a s e n s i t i v i t y  index of t h e  form: 

T h e  input i s  t h e  u n i t  s t e p  f u n c t i o n  and t h e  i n t e g r a l  i s  taken from 

t=O to i n f i n i t y .  This  i n t e g r a l  has  a  f i n i t e  va lue  a s  long a s  t h e  

system response  i s  s t a b l e ,  s i n c e  t h e  c lose- loop s t a t i c  s e n s i t i v i t y  i s  

always equa l  t o  u n i t y  and, t h e r e f o r e ,  l i m  a l ( t )  = 0.  
t' =' 

T h e  va lue  of t h e  s e n s i t i v i t y  index was computed a s  a  func t ion  

of t h e  f r e e  des ign  parameter ,  SOL, a s  shown i n  Figure  2 . 3  f o r  a  

range of va lues ,  which g i v e  a  s t a b l e  response.  Thus, it i s  seen t h a t  

t h i s  system has minimum s e n s i t i v i t y  t o  changes i n  t h e  open-loop s t a t i c  

s e n s i t i v i t y ,  a s  de f ined  by Js, when SOL10.4, which corresponds t o  a 

damping r a t i o  of c'0.75 of t h e  dominant second o r d e r  mode. The s e n s i t i -  

vity index of Equation ( 2 . 1 4 ) ,  t h e r e f o r e ,  d e f i n e s  an a b s o l u t e  minimum 

s e n s i t ~ v i t y  of t h i s  system w i t h  r e s p e c t  t o  t h e  open-loop s t a t i c  

s e n s i t i v i t y .  I f  t h e  system s p e c i f i c a t i o n s  were only concerned wi th  

t h e  d e v i a t i o n s  of t h e  o u t p u t  due t o  changes i n  SOL, t h i s  va lue  of  SOL 

would seem t o  be a  r easonab le  choice .  

The s e n s i t i v i t y  f u n c t i o n  f o r  t h r e e  va lues  of SOL i s  shown i n  

F i g u r e  2-4. I t  i s  i n t e r e s t i n g  t o  n o t e ,  t h a t  t h e  maximum v a l u e  of  O l ( t ) ,  

which i s  p r o p o r t i o n a l  t o  t h e  maximum d e v i a t i o n  of t h e  system ou tpu t ,  



0 .2 .4 .6 .8  L, 0 

F i g u r e  2 . 3 .  S e n s i t i v i t y  i ndex  a s  a f u n c t i o n  of SOL 

-.6 ' 
F i g u r e  2 . 4 .  S e n s i t i v i t y  f u n c t i o n s  w . r . t .  SOL 



increases monotonically as a function of S 
OL ' Hence, if al were 

max 
to be used as an index of sensitivity, the absolute minimum sensitivity 

would correspond to SOL=O, which is not a very meaningful result. For 

S =,$, cs (t) is seen to combine a relatively small maximum value with 
OL I 

a fast settling time. 

In most applications, however, system sensitivity must be 

considered in the context of specific requirements on the system 

response, The sensitivity index of the type discussed above is 

pcte~tkally useful in this case as a component of the performance index 

which expresses the overall system performance. 

2.3 Transfer Function Sensitivity 

In addition to time domain sensitivity, two other definitions 

of system sensitivity have been found useful in control system design. 

These are Bode's [ definition of the transfer function sensitivity, 

and the sensitivity of the closed-loop poles and zeros to changes in 

the open-loop system characteristics. 

The sensitivity of the closed-loop transfer function of the 

system shown in Figure (2.11, due to changes in a system design 

parameter, can be defined as: 

where G is the closed-loop transfer function given by: 



G Depending on t h e  l oca t ion  of t he  parameter va r i a t i on ,  S  can be 
5 

wr i t t en  a s :  

where t h e  t h r e e  equations correspond t o  parameter va r i a t i ons  i n  P, G1 

2 and G2,  r espec t ive ly .  sP SG1 and S represen t  t he  e f f e c t s  of un:+ 5' 5 5 
parameter va r i a t i ons  on t h e i r  respec t ive  open-loop t r a n s f e r  functions, 

and sG r e l a t e  t h e  changes i n  these  open-loop t r a n s f e r  functions 
'G, G, 
I L 

t o  t he  change i n  t he  closed-loop t r a n s f e r  funct ion.  By d i f f e r e n t i a t i o n  

of Equation (2.16) wi th  respec t  t o  P, G1 and G2 it i s  e a s i l y  shown that: 

and 

A r e l a t i onsh ip  between these  t r a n s f e r  funct ion s e n s i t i v i t i e s  

and t h e  s e n s i t i v i t y  funct ion of t he  system output  response can be 

obtained by consider ing t he  transform of t h e  system outpu t ,  w h i c h .  i s  

given by : 



~ifferentiating this equation with respect to the variable system 

paraxeter and using the definition of the sensitivity function of the 

output, the following expression is obtained: 

G 
Thus, S E  is a transfer function, that relates the sensitivity 

function to the corresponding output response. If it is assumed that 

the system output response is completely specified, then the output 

sensitivity function can only be controlled by adjusting S G 
5 ' 

riorcwitz E1.71 has shown, that in the case of changes in the plant, S G 5 
can be adjusted independent of the closed-loop transfer function only 

when both G1 and G2 can be chosen by the designer. In this case 

Equation (2.21) can be written: 

Since y(s) is specified and the changes in P as represented 
D 

by S; are, in most cases, not under the control of the system designer, - 
only the total open-loop transfer function, GO= = G1G2P, is available 

for adjusting the sensitivity response. Hence, the open-loop gain 

would be chosen as large as possible in the frequency band of the 

system output in order to reduce the output sensitivity. This can be 

achieved by using large feedback gain at these frequencies. The 

Eomard loop compensation, Gl(s), is then appropriately chosen in 

order to achieve the specified closed-loop transfer function. 

From Equation (2.18) it can be seen that changes, which occur 

in t h e  forward loop compensation, have the same effect on system 

output as if they had taken place in the plant. ,In this case: 



1 The d i f f e r ence  here  i s ,  t h a t  some con t ro l  of S and the  corresponding 5 
parameter v a r i a t i o n s  may be poss ib le .  S imi la r ly ,  t h e  output  s e n s i t i v i t y  

t o  changes i n  t h e  feedback path  can be wr i t t en :  

I t  was found des i r ab l e  t o  use l a r g e  values of G2 i n  order  t o  

reduce t he  output  s e n s i t i v i t y  t o  changes i n  t h e  forward loop elements, 

  qua ti on (2.24) shows, t h a t  t h i s  has t h e  e f f e c t  of increas ing  t h e  

output  s e n s i t i v i t y  t o  changes i n  t h e  feedback path.  I n  order  t o  

achieve o v e r a l l  reduction i n  t h e  s e n s i t i v i t y  of t h e  system output  i n  

t h i s  way, it i s  necessary t o  r equ i r e  t h e  va r i a t i ons  i n  t h e  feedback 

compensation t o  be small .  This po in t  i s  sometimes a l l  bu t  neglected 

i n  t h e  d i scuss ion  of con t ro l  system s e n s i t i v i t y .  

Another undesirable  e f f e c t  of l a rge  feedback gain  i s  i t s  

ampl i f ica t ion  of noisy s igna ls .  Consider, f o r  ins tance ,  t h e  effect 

of sensor  no ise ,  which e n t e r s  t h e  system a t  t h e  feedback l e v e l  as 

shown i n  Figure 2.5. 

Figure 2.5 System with feedback no ise  



The e f f e c t  of t h e  n o i s e  on t h e  o u t p u t  i s  expressed by t h e  t r a n s f e r  

f u n c t i o n  :: 

~ h u s ,  i f  t h e  open-loop t r a n s f e r  f u n c t i o n ,  G G P ,  i s  l a r g e  i n  t h e  1 2  

frequency band of n ( s ) ,  t h e r e  i s  ve ry  l i t t l e  a t t e n u a t i o n  of  t h e  no i se .  

Hence, it may be necessary  t o  r e s t r i c t  t h e  bandwidth of t h e  feedback 

e2erne;a.t~ which may c o n f l i c t  w i t h  t h e  g o a l  of dec reas ing  system 

s e n s i t i v i t y ,  

G A s e n s i t i v i t y  index i n  t e r m s  o f  S g  ( jw) can be  ob ta ined ,  f o r  

example, by w r i t i n g  Equation (2.14) i n  t h e  form: 

J~ =I o2 (t) d t  = (jU) S S  G ( - jo )  y  ( jw) y  (-jw) d( jo)  (2.26) 
0 - jco 

wkere Equation (2.21) has  been used t o  s u b s t i t u t e  f o r  a ( s ) .  Th i s  form 

of t h e  s e n s i t i v i t y  lndex may be  u s e f u l  when t h e  t r ans fo rm of t h e  system 

output i s  s p e c i f i e d ,  s i n c e  Js i s  now an e x p l i c i t  f u n c t i o n  of y ( s ) .  

I n  the d i s c u s s i o n  of c o n t r o l  system s e n s i t i v i t y  it has  been 

f o ~ n d  convenient  t o  r e q u i r e  t h e  same nominal response  t o  be mainta ined 

i n  order t o  g i v e  a  b a s i s  f o r  comparison of  des igns  w i t h  d i f f e r e n t  

means of cornpensation. By s o  doing,  t h e  problem of system s e n s i t i v i t y  

i s  s e p a r a t e d  from t h a t  of  ach iev ing  t h e  d e s i r a b l e  response  c h a r a c t e r -  

i s t i c s ,  T h i s  i s  a  m a t t e r  of  convenience and may n o t  always be p o s s i b l e  

o r  desirable a s ,  f o r  example, when t h e  d e s i g n e r  has  l i m i t e d  freedom 

i n  choosing t h e  form and l o c a t i o n  of  t h e  compensating elements.  



2.4 Closed-loop Pole Sensitivity 

Closed-loop pole sensitivity has been found to be a useful tool 

for analyzing the effects of changes in the open-loop parameters on 

the closed-loop response characteristics of the system. This is 

especially true for systems with relatively few dominant modes, as is 

th the case in most flight control systems. The sensitivities a£ the i- 

closed-loop pole, pi, due to changes in the open-loop static sensitivity, 

poles and zeros, are defined as follows: 

where SOL is the open-loop static sensitivity, and and 2 denote 
j j 

th the j- open-loop pole and zero, respectively. The following 

expressions have been derived for these sensitivities in ~eference'~~] 

for simple closed-loop poles: 



A somewhat simpler derivation of these equations is given in Appendix 

A of this thesis. 

The closed-loop pole sensitivities, are, in general, complex 

numbers which can be used to compute the first order variations of 

any closed-loop pole due to changes in the open-loop parameters. The 

effect of such a variation on the time response depends on the 

nominal location of the corresponding closed-loop pole. These sensi- 

tivities are, therefore, most useful when this location in the complex 

plane is specified. Then it is only necessary to determine if the 

poies move too far from these locations to adversely affect the 

response. The sensitivity of closed-loop zeros to variations in the 

open-loop parameters is easily determined, since the closed-loop 

zeros consist of the forward path open-loop zeros, as well as the 

opec-loop poles of the feedback path. 

It is of interest to determine the relationship between the 

ciosed-loop pole sensitivities and the output sensitivity function, o(t). 

Assuming, for example, that only the closed-loop poles are affected 

by a parameter change, the following relationship can be derived: 

d G  can be written as: But - 
aprb 

where p, is assumed to be a distinct pole. If the variable parameter 
.E 

is taken to be an open-loop pole, P j ,  the following expression for 



0 (s)  i s  obtained,  using Equations (2.27) , (2.29) and (2.30) : 

The s e n s i t i v i t y  funct ion can, t he re fo re ,  be obtained as the  

summed output  of n  p a r a l l e l  f i r s t  order  f i l t e r s  driven by t h e  system 

output ,  a s  shown i n  Figure 2.6. The poles  of these  f i l t e r s  are t h e  

system closed-loop poles  and t h e i r  gains  a r e  proport ional  t o  t h e  

closed-loop pole  s e n s i t i v i t i e s .  Thus each of these  f i l t e r s  produces 

t he  cont r ibu t ion  of a  s p e c i f i c  closed-loop pole  t o  t h e  output s e n s i t i -  

v i t y  funct ion corresponding t o  an open-loop pole. S imi la r  r e l a t i onsh ips  

can be obtained when t h e  va r i ab l e  parameter i s  an open-loop zero or  

t h e  open-loop s t a t i c  s e n s i t i v i t y .  Thus, f o r  a  v a r i a t i o n  of t h e  open- 

loop zero, 2 - 
1. 

and i n  t h e  case  of t h e  open-loop s t a t i c  s e n s i t i v i t y ,   so^ : 

where t h e  closed-loop s t a t i c  s e n s i t i v i t y ,  SCL, i s  assumed unaffected,  

I t  i s  c l e a r  from Figure 2.6, t h a t  f o r  a  system with spec i f i ed  

closed-loop po les ,  t h e  only way i n  which t h e  output  s e n s i t i v i t y  

funct ion can be influenced i s  through the  closed-loop pole  s e n s i t i v i -  

t i e s .  Hence, it may be expected t h a t  t he  minimization of some 





sensitivity index, defined in terms of ~ ( t )  and its derivatives, 

leads to a reduction of the corresponding closed-loop pole sensitivi- 

ties. The relative reduction of a closed-loop pole sensitivity is 

likely to depend on the importance of the corresponding mode in the 

system response. 

Finally, Equations (2.21) and (2.31) can be used to relate the 

sensitivity of the transfer function to the closed-loop pole sensitivity 

due to an open-loop pole variation, which is assumed to affect only 

the closed-loop poles: 

Similar expressions for the other open-loop parameters are r e a d i l y  

obtained from Equations (2.32) and (2.33) . 
2.5 System Specifications 

In a practical control system design the question of system 

sensitivity must be considered as it relates to the overall performance 

requirements. The definition of sensitivity which is most useful 

depends to some extent on the form in which these requirements are 

expressed. For this reason, and for the purpose of later development, 

it is appropriate to consider the types of system specifications 

which are commonly used in control system design. 

2.5.1 Time Domain S~ecifications 

One form of system specifications which has been used very 

extensively is the envelope of the system step response of the type 

shown in Figure 2.7, which specifies the permissible tolerances of the 

system output due to a unit step input. 



normalized 
oul,put 

- - - - - - m e  - - -  

r - - - -  

time 

Figure 2.7. Normalized step response specifications 
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Figure 2.8. Frequency response specifications 



The i m p l i c a t i o n  i s  t h a t  any system des ign  which has  a  s t e p  

response  l y i n g  w i t h i n  t h e  s p e c i f i e d  envelope i s  s a t i s f a c t o r y .  Thus 

any such response  i s  e q u a l l y  accep tab le  r e g a r d l e s s  of  how c l o s e  t o  o r  

f a r  from t h e  boundaries it l ies .  When a f i x e d  set  of  system parameters  

i s  considered  it i s ,  t h e r e f o r e ,  s u f f i c i e n t  t o  determine a  compensation 

t h a t  r e s u l t s  i n  a  s a t i s f a c t o r y  system response  f o r  t h e  g iven s e t  of 

des ign  parameter  va lues .  I f ,  on t h e  o t h e r  hand, some of t h e  system 

parameters  vary over  a  range of v a l u e s ,  o r  a r e  n o t  a c c u r a t e l y  known, 

t h e  problem becomes more d i f f i c u l t .  I t  i s  no longer  s u f f i c i e n t  that 

t h e  des ign ,  based on t h e  nominal parameter  v a l u e s ,  have a  s a t i s f a c t o r y  

response.  

The o u t p u t  response  may now be  r e q u i r e d  t o  remain w i t h i n  the 

envelope f o r  a l l  p o s s i b l e  parameter  v a r i a t i o n s .  A d i f f e r e n t  s t a t ement  

of t h i s  s p e c i f i c a t i o n  was sugges ted  i n  Reference [ 4 4 ]  f o r  systems,  

whose parameter  va lues  a r e  known i n  terms of t h e i r  s t a t i s t i c a l  

d i s t r i b u t i o n .  I n  t h i s  case  t h e  des ign  may be  r e q u i r e d  t o  s a t i s f y  t h e  

s p e c i f i c a t i o n s  wi th  a  s t a t e d  p r o b a b i l i t y .  Thus, any des ign  which 

s a t i s f i e d  t h e  response  s p e c i f i c a t i o r s  wi th  a  p r o b a b i l i t y  equa l  t o  o r  

b e t t e r  than t h e  s p e c i f i e d  p r o b a b i l i t y  would be accep tab le .  

A l t e r n a t i v e l y ,  more than a  s i n g l e  response  envelope could  be  specif]-ed 

a s  shown i n  Figure  2 .7 .  Varying degrees  of a c c e p t a b i l i t y  can then be 

a s s o c i a t e d  wi th  each envelope o r  t h e  nominal response  may be  required 

t o  s a t i s f y  t h e  most c o n s t r a i n i n g  one wi th  less severe  requiren-tents an 

t h e  off-nominal response.  

The q u e s t i o n  a r i s e s  how s p e c i f i c a t i o n s  of t h i s  t y p e  can be 

i n t e r p r e t e d  i n  t e r m s  of  requirements on t h e  s e n s i t i v i t y  of  t h e  

system response.  Given any nominal response which s a t i s f i e s  t h e  

s p e c i f i c a t i o n s ,  it i s  c l e a r  t h a t  any d e v i a t i o n s  due t o  parameter  

v a r i a t i o n s  must be  bounded i f  t h e  response  i s  t o  remain w i t h i n  t h e  



t o l e r a n c e s .  The requi rements  on t h e  s e n s i t i v i t y  of  t h e  o u t p u t ,  

t h e r e f o r e ,  depend on both  t h e  nominal response  and t h e  t o l e r a n c e s  a s  

expressed by t h e  response  envelope.  Hence, it is a  m a t t e r  of  convenience 

t o  p r e s c r i b e  t h e  nominal response  and d e a l  wi th  t h e  s e n s i t i v i t y  

problem s e p a r a t e l y .  A s  has  been po in ted  o u t ,  t h i s  r e q u i r e s  a  g r e a t  

amount of freedom i n  t h e  d e s i g n ,  which may n o t  always be  a v a i l a b l e .  

I n  any e v e n t ,  it i s  necessary  t h a t  t h e  s e n s i t i v i t y  of t h e  t i m e  

resaonse  be bounded i f  t h e  s p e c i f i c a t i o n s  a r e  t o  be  m e t .  The 

s e n s i t i v i t y  i n d i c e s  d i scussed  i n  S e c t i o n  2.2.1 a r e  measures of t h e  

magnitude of t h e  response  s e n s i t i v i t y .  The e f f e c t  of  us ing  t h e  

q u a d r a t i c  form i n  t h e s e  i n d i c e s  i s  t o  emphasize t h e  peaks o f  t h e  

s e n s i t i v i t y  f u n c t i o n  which correspond t o  t h e  peak d e v i a t i o n s  of  t h e  

response ,  I t  may be expected ,  t h a t  by c o n t r o l l i n g  t h e  va lue  of  a  

s e n s i t i v i t y  index of  t h i s  t y p e ,  t h e  a c t u a l  d e v i a t i o n s  of t h e  system 

t i m e  response  can be  cons t ra ined .  

2-5-2 Frequency Response S p e c i f i c a t i o n s  

ane  frequency response  can be  s p e c i f i e d  by i t s  t o l e r a n c e s  a t  

a11 f r equenc ies  of i n t e r e s t  analogous t o  t h e  s p e c i f i c a t i o n s  i n  t h e  

t ime domain. This  r e s u l t s  i n  an envelope of a l l  accep tab le  frequency 

responses  of  t h e  t y p e  shown i n  Figure  2.8. When cons ide r ing  a system 

w i t c  u n c e r t a i n  des ign  parameters ,  t h e  des ign  may be  r e q u i r e d  t o  s a t i s f y  

t h e s e  s p e c i f i c a t i o n s  w i t h  a  s t a t e d  p r o b a b i l i t y  o r  va ry ing  degrees  of 

a c c e p t a b i l i t y  may be  i n d i c a t e d  a s  shown. The r e l a t i o n s h i p  of t h e  

t r a n s f e r  f u n c t i o n  s e n s i t i v i t y  t o  t h e s e  s p e c i f i c a t i o n s  i s  analogous t o  

t h e  r e l a t i o n s h i p  between t h e  s e n s i t i v i t y  func t ion  and t h e  t i m e  response  

envelope.  Thus, given a  nominal frequency response  of  t h e  system, t h e  

s e n s i t i v i t y  of  t h e  t r a n s f e r  f u n c t i o n  must be  l i m i t e d  i f  t h e  s p e c i f i -  

c a t r o n s  a r e  t o  be  m e t  f o r  a l l  p o s s i b l e  parameter  v a r i a t i o n s .  



When non-minimum phase systems are considered, it is necessary 

to specify the tolerances of the phase-angle as a function of 

frequency in addition to the amplitude response. These specifications 

can, in theory, be interpreted in terms of specifications on the system 

time response. 

2 .5 .3  Com~lex Plane S~ecifications 

Specifications of the acceptable closed-loop root locations is 

a convenient method for defining the satisfactory response of a system 

with relatively few dominant modes. These locations may be given as 

bounded areas in the s-plane, which correspond to the time or frequency 

response envelopes. Thus, in the case of variable design parameters, 

the closed-loop roots could be required to remain within the assigced 

areas with a given probability. The relationship of the closed-loop 

root sensitivities to these specifications is again dependent on the 

nominal system design. Given the nominal locations of the closed-loop 

roots, their sensitivities to the appropriate parameter variations 

must be small enough so that the roots remain within the specified 

areas in the complex plane. 

2.6 Sensitivity Design Methods 

A number of methods have been proposed for designing control 

systems, which satisfy specifications of the type discussed in 

Section 2.5 despite changes in some system parameters. Although the 

emphasis in this report is on time domain methods, it is of interest 

to review the frequency domain and complex plane approaches, which 

can be useful in selecting the type of compensation when the configura- 

tion of the controller must be chosen. 



2-6, i Time-Domain Design 

Time-domain design methods commonly require the performance of 

the system to be expressed in terms of an index, which is a function 

of the system time response. This performance index can sometimes be 

regarded as a measure of how well the system is doing relative to a 

desired performance, which presumably satisfies all the system 

specifications and is achieved when the value of the performance 

index goes to zero. The optimum design, relative to the desired 

performance, is obtained by minimizing the performance index with 

respect to the available control variables. 

When considering the design of a system with uncertain or 

variable design parameters, the effects of the uncertainties on the 

system performance may be taken into account by somehow including 

these effects in the performance index of the system in an attempt to 

satisfy ail the system specifications simultaneously. This can be 

done, for instance, by adding a sensitivity index of the type discussed 

in Section 2.2.1 to the index representing the nominal*system 

performance. The assumption is, that minimization of this expanded 

performance index will reduce the effects of the parameter variations 

on ehe system response, in addition to obtaining a desired nominal 

response, 

The design problems are usually divided into two categories: 

- free configuration or optimal control 

--- fixed configuraiton or parameter optimization 

Considerable effort [ 7 I ,  [22], [ 3 6 ]  has been spent on studying 

the optimization of a quadratic performance index of the form: 



where - x(t) is the state vector of a linear system with a given initial 

condition, - u(t) is the sensitivity function of the state with respect 
to a single variable parameter and - u(t) is to be determined s o  that 

J is minimized over the time interval (0,T). The system variables 

are described by equations of the form: 

There are several drawbacks to this approach. First, the 

sensitivity function cannot be determined unless the functi0na.l 

relationship of the control vector, - u(t), to the state is known. The 

difficulty is usually avoided by defining - u(t) as a linear function 
of x and D, leaving the feedback gains free to be selected. , - - 

This makes it possible to obtain explicit equations for - u, but u has - 

now become a function of variables which are unavailable in any form 

in the system. The controller must then compute the solutions of 

a(t) in real time, which is likely to be an undesirable complexity, - 

In addition, the improvement in the sensitivity of the response due 

to the feedback of a may be insignificant and has been found to have - 
a deteriorating effect in some instances [ 3 6 1  

When multiple parameter variations are considered, an equal 

number of sensitivity functions must be added to the performance index. 

Since Equation (2.37) must be solved separately for each variable 

parameter, the computational task becomes prohibitive. Consequently, 



only single parameter variations have been assumed in most of the 

studies of the subject. If u is taken to be a function of x only, - - 
the structure of the controller is simplified, since it is no longer 

necessary to compute - o in real time. The minimization of the 

performance index for multiple parameter variations is, however, still 

a difficult task. The choice of weighting matrices for the 

sensitivity index is an area of some ambiguity, since no systematic 

method has been proposed for making this choice. 

A somewhat different approach to the problem of parameter 

uncertainty was taken by Tuel L43  who defined the system performance 

index, knowing the statistical distribution of the parameters as the 

expec-tedl value of the quadratic performance index: 

This fornulation of the problem is not limited to small parameter 

varuatlons, but the control law which minimizes cannot, in general, 

be 3ut into a feedback form. 

The parameter optimization method would appear to be more 

prornislng for a practical control system design including system 

sensltsvity. The reason is, that many of the analytical and 

computational difficulties, which are associated with the optimal 

control design, can be avoided by specifying the configuration of 

the system. Such a method was developed by Mazer [ 241  based on 

the minimization of the mean square value of the system output 

devlat~c~ns with respect to designated system parameters,using a 

perzodic input and specifying the nominal response of the system. 

The computational difficulties in obtaining the optimum parameter 

values are considerable, however, for all but low order systems since 



the mean square value must be evaluated, using Parseval's theorem, as 

an integral over all frequencies. 

No method of the types discussed can guarantee that speeifi- 

cations, such as those of Section 2.5.1, will be satisfied. Thus, a 

relatively low sensitivity design may not be acceptable unless i ~ s  

nominal response is also suitably situated with respect to its 

tolerance envelope. Conversely, a good nominal response is acceptable 

only if the deviations, due to the specified parameter variations, do 

not violate the appropriate boundaries. Hence, the minimization of 

the performance index is a useful design tool, but the acceptability 

of the solution must be judged on the basis of haw well it satisfies 

the original system specifications. 

2.6.2 Frequency Domain Design 

The most successful methods for reducing the effects of p i a n t  

variations on the system performance have been formulated in t-erms 

of the frequency response. H~rowitz'l~~ developed a method whereby the 

open- and closed-loop transfer functions can be determined such as to 

satisfy specifications of the type discussed in Section 2 . 5 . 2 ,  assuming 

that the compensation in the forward and feedback paths can be chosen 

freely. The open-loop transfer function, 60L, uniquely determines 

the sensitivity of the closed-loop frequency response to changes ia 

the forward path as seen from Equation (2.18). The advantage of this 

technique is that it is not limited to small parameter variations and 

it is directly related to the specifications on the frequency response, 

This is seen from the fact that the ratio of the closed-loop response 

and its nominal value can be expressed as: 



where P represen ts  any off-nominal frequency response of t he  p lan t .  

~ p e c i f i c a t i o n s  of t h e  type shown i n  Figure 2.8 can be used t o  determine 

G the  extreme values of 1-1 f o r  a l l  frequencies of i n t e r e s t .  Knowing 
G * 

P the  extreme values of -, G* can then be determined so  t h a t  t he  
P* OL 

r a t i o  of t h e  closed-loop responses remains within  t h e  spec i f i ed  l i m i t s .  

It chen remains t o  s e l e c t  t he  proper compensation f o r  r e a l i z i n g  G* 
OL ' 

which must be d i s t r i b u t e d  between the  forward and feedback paths  i n  such 

a w a y  t h a t  t he  des i red  closed-loop response, G,,  is achieved. 

This method can be used t o  dea l  with l a r g e  changes i n  t h e  

t r a n s f e r  funct ion of t he  p l an t ,  which need be known only i n  terms of 

the  extremes of t he  frequency response. I t  i s ,  however, not  very 

s u i t a b l e  f o r  t ak ing  i n t o  account changes i n  t he  c h a r a c t e r i s t i c s  of t he  

compensation, whose elements a r e  determined a f t e r  a s u i t a b l e  open-loop 

frequency response has been found. I n  t h e  case of non-minimum phase 

systems, both amplitude and phase response spec i f i ca t i ons  must be 

considered when determining t h e  s a t i s f a c t o r y  open-loop frequency 

response, 

1 5 2 Cmplex Plane Design -- - - 

T h e  ob j ec t i ve  of t h e  complex plane methods i s  t o  ensure t h a t  

t he  dominant closed-loop roo ts  remain within  spec i f i ed  a reas  i n  t he  

complex plane f o r  a l l  poss ib le  operat ing condi t ions .    his means, f o r  

i n s t ance ,  t h a t  t h e  movement of t he  closed-loop poles  must somehow be 

restr ictcsd desp i t e  changes i n  t h e i r  open-loop counterpar ts  o r  t h e  loop 

gain ,  A s t ra igh t forward  method f o r  achieving t h i s  goal  i s  t o  place 

compensating zeros c lo se  t o  t h e  des i red  pole  l oca t ions ,  which i n  

c o n ~ u n c t i o n  with high loop gain ensures t h a t  t he  closed-loop poles  

w i l l  be c lose  t o  t he  zero loca t ions  regard less  of open-loop changes. 

T h e  asswnption i s  then,  t h a t  t he  zeros of t he  compensation a r e  highly 

stable wnich i s  a p a r t  of t h e  p r i c e  paid f o r  low s e n s i t i v i t y  t o  



changes in the plant. 

If these zeros are not to alter the response characteristics, 

they must be placed in the feedback path of the single-loop system, 

which eliminates them from the closed-loop transfer function, The 

accompanying poles must be at high enough frequency such as to have 

a small effect on the system response. The dominant system poles are, 

therefore, stabilized by increasing the gain of the feedback path in 

the frequency band of the corresponding dominant mode. 

Cancellation of the varying open-loop pole may also be 

attempted by locating a zero in the forward path. The associated pale 

is then placed in some desirable location. Again, the compensation 

must be quite stable and the gain must be large enough for an 

effective cancellation despite changes in the pole location. Variable 

open-loop zeros can be dealt with in a similar way by placing a pole  

in its vicinity, either in the forward or feedback paths. This 

approach to the sensitivity problem is useful for determining the 

type of compensation to be used in a fixed configuration design in rhe 

time domain. 

The complex plane design is mainly concerned with the :Low- 

frequency dominant modes and constrains the higher frequency modes 

to be well damped in order to have a small effect on the system response, 

Thus, the sensitivity problem is to some extent separated from the 

stability problem, which is considered as a constraint on the design, 

This is a convenient approach, but could conceivably result in an 

unnecessarily complicated design. 

Techniques for determining the locations of the compensation 

singularities have been developed [I6] [201 for satisfying specifications 

of the type discussed in Section 2.5.3. 



One of the characteristics of the sensitivity methods, which 

have been reviewed in this section, is that they are considerably 

more complicated than similar methods which assume that all the design 

parameters are invariant. In the case of frequency domain methods 

the problem of system sensitivity is often separated from the question 

of system stability and the achievement of a desirable nominal response. 

This is a matter of convenience which often requires a great amount 

of freedom in the choice of compensation. 

The application of time domain methods suffers from the ambiguity 

introduced by the arbitrary choice of the sensitivity weighting matrix. 

Typically, these methods require the feedback of all system variables, 

including the sensitivity functions which must be computed in real 

time, The resulting design may be undesirable or impractical because 

of the associated complexity. The numerical difficulties in obtaining 

the solution nave limited the application of these methods to relatively 

simple problems. 

A time domain method, which alleviates some of these 

difficulties, will be developed in Chapter 3. 



Chapter 3. A Sensitivity Design Method 

3.1 Introduction 

In this chapter, a method will be developed for the design of a 

linear control system in which some of the system parameters are 

known only in terms of their statistical distribution. When tohe design 

problem is defined in terms of a specific performance index, a straight- 

forward approach consists of minimizing the statistical expectation of 

the performance index using the known parameter distribution and 

subject to the constraints imposed by the system dynamics. The cask 

of obtaining a solution to this problem is very difficult, in general, 

and some simplifying assumptions are necessary. First it is assumed 

that a quadratic performance index expressed in terms of the system 

state will be used. The state is extended to include the state of a 

reference model. Furthermore, the choice of system configuration will 

be made a priori by the designer with certain designated free design 

parameters whose values can be chosen to minimize the expectation of 

the performance index. The fixed configuration allows the designer 

to restrict the complexity of the system in advance, which has been 

found to be a very practical design approach. In addition, one avclids 

the problems associated with determining the variation of the system 

state due to parameter changes, when the form of the control feedback 

configuration has not yet been determined. The phase-variable forn 

of the state equations will be used throughout this thesis because of 

significant computational advantages. These equations are alsa 

convenient for transforming the system transfer functions into state 

equations and vice versa. This is especially the case when studying 

the effects of different methods of compensation. The design nzetkod 

will be developed for a single input/output system with the unit see? 

function as the standard input. Extension to multivariable systems 

is straightforward but increases the computational task considerably. 



Finallyp it will be assumed that the parameter variations are such 

that the resulting change in the state vector is sufficiently described 

by its first order variation. 

3 - 2  System Equations 

One possible state-space realization of a general transfer 

f u n c t i o n  : 

was given in Section 2.2.2 as: 

where 1: is an n-dimensional state vector whose first element, yl, is 

the system output, A_ is an nxn matrix in the phase-variable form: 

and - c .is given by Equation (2.3). For a system whose output reaches 

a steady-state as time goes to infinity, it is convenient to use only 

the transient part of the response. This is obtained by subtracting 

the steady-state value from the state vector. Thus: 



where - x(t) is the transient response and: 

= lim ~ ( t )  
Yss t + m  

For a unit step input the equation for ~ ( t )  can be written in t h e  

homogeneous first order form: 

where the initial condition includes the effects of the system input, 

The appropriate form of this initial condition can be determined by 

finding the steady-state value of the state from Equation (3.2) by 

setting the derivative equal to zero: 

since u(t) = 1 for t - > 0 .  Using the phase-variable form of the system 

matrix, this equation can be written as: 

By using Equation (2.3) for cn and substituting from Equation i 3 , 7 a ! ,  

y1 is obtained from (3.7b) : 
S S 



since e.=O for l<i<n-m as shown by Equation (2.3) ~hus: 
.L - 

x is now readily obtained from Equation (3.3) by setting t=O: 
-0 

:since ~ ( 0 )  = 0. Using Equations (3.7a) and (3.9) and substituting 

for - c f:rom Equation (2.3) gives the following result: 

where t.he summation term is zero when n-m>i-1. Since xo is a function 
of the numerator coefficients of the transfer function given by Equation 

(3,1), it contains the effects of the system zeres as well as the 

input step function. The zeros are in fact represented by the last 

n initial condition states, which are referred to as pseudo initial 

conditions by Rediess [31] since they are not actual system initial 

conditions. The advantage of using the transient state vector is 

that it approaches zero as time increases for a stable system, which 

makes it a suitable variable in the integrand of a performance index 

defined as an integral over all time. The homogeneous equation is 

also simpler from a computational point of view than the equation, 

containing the forcing term explicitly. 

It should be noted here that the transfer function given by 

Equation (3.1) is the closed-loop transfer function of the Lystem. 



The coefficients of its numerator and denominator are, therefore, 

known functions of the design parameters and will be written in 

vector form as - b and - a, respectively. The design parameters, which 

are of most direct interest are the free design parameters, denoted by 

the vector p, and the variable or uncertain parameters, denotsd by 5, - - 

The free design parameters can be chosen by the designer to satisfy 

the system specifications. The variable parameters are assumed to 

have some known statistical distribution and may or may not be under 

some control of the designer. Thus the - €, vector may contain one of 

the elements of the p vector, for instance, in which case only the 

nominal value of that free design parameter can be chosen. A eonve- 

nient method for dealing with this case will be developed later, 

In many cases, however, the variable parameters are completely beyand 

direct control of the designer. 

The functional relationship between these design parameters and 

the closed loop system coefficients is then expressed by: 

a = a (p,s) - - -  

and - b = - b (,PIS) 

3.3 Problem Formulation 

In the parameter optimization problem all feedback loops are 

closed beforehand, and the type of compensation selected. The system 

matrix in Equation (3.5) is, therefore, a function of the specified 

free design parameters, as well as the variable parameters, t.braugh 

its dependence on the coefficients of the characteristic equa.tion, 

The initial conditions are also functions of these design parameters 

due to their dependence on the closed-loop system  coefficient:^: 



The performance of the system is taken to be represented by a quadratic 

expression in terms of the transient system state vector: 

where Q - is a constant, positive semi-definite weighting matrix. Since 

the control input is contained in the homoge~eous state equation, its 

effect is also included in this performance index. The optimum 

performance is achieved by minimizing J with respect to the free 

design parameters. When all system parameters are known to have some 

ssecified deterministic values, J is also deterministic and the 

minimization procedure is relatively straightforward. If, a-the other 

hand, some system parameters are known only in terms of their statis- 

tical distribution, J is no longer deterministic. In this case it is 

logical to define the performance index to be the mathematical expec- 

tation of J: 

where the bar represents the ensemble average of the quantities. It 

will be assumed that the variable parameters have some statistical 

distrib;ution whose first and second order statistics are known. The 

nominal operating condition of the system will, furthermore, be chosen 

to correspond to the expected values of these parameters: 



where - 5 is the vector of variable parameters and the asterisk indicates 

the nominal value. The deviation of - 5 from its nominal value is then 

described by its covariance matrix: 

where 65 - is the deviation of - 5 from the nominal value and R - is a 

known matrix. 

It should be mentioned again, that some of the components of 2 

and - 5 may be common, i.e. any free design parameter may also be a 

variable parameter. The nominal value of this parameter can then 

be chosen, but the variation about this value is determined by its 

variance. It is convenient in this case to write the true value o f  

the free design parameter as: 

where p* is the nominal value, which can be chosen, and 5 represects 

the variable part of this parameter, whose nominal value is given by: 

It is indeed, convenient for computational work to write all the 

variable parameters in this form, as a product of their nominal values 

and a variable part which then takes on the percentage deviation of 

the parameter. The system state vector can be written as: 

where 5; is the nominal response obtained from the system equation 

by using the nominal values of the variable parameters. The change 



in the response, 611, is the result of some parameter variation, 65, 

and is described to first order by the equation: 

which is obtained by taking the first order variation of Equation (3.5). 

5, 1 s  the nominal value of the system matrix and 65 is its variation 

from the nominal, due to 65, - since A - is a function of both 5 and thefree 

desagn parameters. The initial state vector, xo, is also a function 

of - (; through its dependence-on &he coefficients of-the transfer 

function, Its first order variation, 6x0, can be expressed as: 

where the derivative is evaluated for the nominal condition. By taking 

the expectation on both sides of Equation (3.15) and interchanging the 

order of that operation with the differentiation: 

sicce &, and x, are both deterministic. Furthermore, by taking the 

variation and expected value of 5 in the phase-variable form: 

But 8a - can be written as: 

since the derivative is deterministic and 65 - = - 0 by the choice of the 



nominal parameter values. Similarly, by taking the expected value of 

Equation (3.16) : 
r 7 

These results are substituted into Equation (3.17): 

This shows clearly that 6x(t) - = - 0 since the equation has no forcing 

terms and is at rest initially. The expected value of the system 

response is, therefore, identical to the nominal response, x,(tX. 
The performance index can now be expressed as: 

Taking expected values on both sides of this equation: 

using the fact that 6 f l  = 9 and - Q and 5, are deterministic. Hence, 

the expected value of the performance index is a sum of two terms, 

the first of which is its nominal value corresponding to the nominal 

system parameters. The second term represents the effect of the 

uncertainty of the parameter values on 5. 

It is necessary at this point to address oneself to the problem 

of computing the value of j, given the mean values of the variable 

parameters as well as their covariance matrix. For this purpose ic 

is convenient to write 3 in the form: 



Q (Im E*X: dt +f 6x - 6xT - dt) 
0 0 1 

where tr denotes the trace of the quantities and ff and 6.X are defined as: - 

The equations for .E and 6s must now be obtained. Using Equation (3.5) 

t h e  following equation can be obtained for the integrand of&: 

Integrating this equation on both sides from t=O to infinity, gives: 

u s i n y  the definition of - X. Since x,(t) is the solution of a linear 

homogeneous differential equation, its value approaches zero as t+m 

T 
for a stable system. Thus, x*x*(m) = 2 and Equation (3.26) becomes: 

x (0: is the initial condition of the nominal state vector and is, -* 
t h e u s f o r e ,  known. The equation for 6X can be obtained in a similar - 
manner, Using Equation (3.15) the following relationship is obtained: 



Integrating on both sides of this equation over all time gives: 

where Y is defined as: - 

Since lim - x(t)=O - for a stable system, the variation of the state also 
t-tw 

goes to zero at infinity, lim bx(t)=O. - - Equation (3.29) then heeomss: 
t+m 

where 6XO is defined by: 

6X can be computed by using Equation (3.16), but Y remains to be -0 - 

determined. By using Equations (3.5) and (3.15) the following equation 

is obtained: 



which by i n t e g r a t i o n  over a l l  time becomes: 

S i r i c e  lim x (t) =O , w e  f i n a l l y  obta in:  - - 
t+=J 

w h e r e  Y i s  given by: -0 

With 6A -. known and X - obtained a s  a so lu t i on  of Equation (3 .27) ,  Y can - 
be found as  t h e  so lu t i on  t o  t h i s  equation.  This so lu t i on  i s  then used 

i n  Equation (3.30) t o  so lve  f o r  6X. - I n  order  t o  f i n d  t h e  mean value 

cf J, however, it i s  necessary t o  determine t h e  mean value  of 6X - as  

seen f r o m  Equation (3 .24) .  Taking t h e  expected value  of t h e  terms i n  

Equation (3.30) gives  : 

SzO can be obta ined by using i t s  d e f i n i t i o n  and Equation (3.16) : 



The quantity 6AY and its transpose present a problem, however, 
- 

since 6A -- - 

and Y - are both functions of the variable parameters, which residlts in 

their being correlated. One possible method for obtaining the expected 

value of this matrix product is to premultiply Equation (3.33) by 6& 

and take the expected value of each term: 

The last two terms on the left hand side can be computed from 

the parameter covariance matrix, since x - is a deterministic matrix, 

The equation can then, in theory, be solved in terms of the elementary 
- 

products which make up the components of the product 6AY. -- This would 

be a very difficult task at best and a much simpler method can be 

developed by taking advantage of the form of the system matrix and 

its variation. The product of 6A and Y can then be written as: 

.. 0 

where Y - has been written in terms of its column vectors. Thus, ~t is 

T only necessary to find the values of 6a - yi for O<i<n-1 - - in order to 

completely determine 6AY. -- This can be done by expanding Equation ( 3 - 3 3 : ,  

considering each of its columns separately, which results in n vector 

equations: 



The first (n-1) equations are iterative and make it possible to 

th st detsrrnine the i- column vector of Y - in terms of its (i-1)- column 

vector, 

~remultiplying these equations by 6aT - and taking the expected 

value yields n scalar equations which are not sufficient in order to 
-- 

T solve for the n desired scalar products 6a - y since these equations i ' 
conkain  other product terms of the form 6a.y One can, however, 

1 j e  

express the inner product of 65 and l as the trace of their outer 
i 

product: 

The following iterative relationship is then obtained by postmultiplying 

the first (n-1) equations of (3.38) by 6aT - and taking expected values: 

where 

and v, is the (i+l)G column vector of the matrix x, which is defined 
-i. 

as : 

The last equation of (3.38) becomes, in a similar way: 



By solving Equations ( 3 . 40 )  and ( 3 . 43 )  it is, therefore, possible to 

determine all the terms necessary for solving Equation ( 3 . 341 ,  which 

can now be written as follows: 

where 

- 
The value of the performance index, J, can therefore be computed by 

solving a series of algebraic matrix equations. The task of f i n d i i ~ g  

the minimum value of 3 with respect to the design parameters is 

discussed in detail in the next chapter. 

3.3.1 Discussion of Performance Index 

The approach taken in this section is basically that of 

stochastic control problem where the uncertainty is due to the 

statistical nature of some system parameters instead of randon noise, 

which enters the system as an input. Under the assumption of f i r s t  



order variations the performance index separates into two terms as 

seen from Equation ( 3 . 2 3 ) .  The first term is the value of the per- 

formance index when the system parameters are deterministic and take 

OR their nominal values. The second term represents the effect of 

the parameter variations on the expected value of the performance 

indear. It is of the same form as the sensitivity index defined by 

Equation (2.10) in the previous chapter. Using the expected value 

of the performance index thus leads to a similar expression as given 

by Equation (2.35) where a sensitivity index is added to the quadratic 

performance index representing the nominal system performance. The 

weighting matrix of the sensitivity index has, furthermore, been 

determined as being equal to the weighting matrix of the nominal state. 

This does not preclude the possibility of using a different weighting 

matrix for the sensitivity index, since in some applications it may 

be desirable to change the relative importance of the various state de- 

viations. In addition it could also be of interest to change the 

srelative weighting of the sensitivity term with respect to the 

nominal term. The performance index may then be written as: 

where Q1 and Q2 are not necessarily equal and E is an arbitrary 

weighting constant. Changing the value of E is, however, completely 

equivalent to scaling the covariance matrix of the variable parameters 

in the same proportion, since: 

where the derivatives are evaluated on the nominal response trajectory. 

So putting more emphasis on the sensitivity index is equivalent to 

increasing the spread of the joint distribution of the variable 



parameters. 

The approach taken to the sensitivity problem in this thesis ties 

together the stochastic control approach and the technique of adding 

an index of sensitivity to the performance index used to express the 

nominal performance. In the past, both of these methods have 

suffered from the difficulties associated with obtaining a numerical 

solution to practical problems, especially when more than one system 

parameter is involved. The fornulation given here alleviates these 

difficulties to a great extent as will be seen in the following 

chapter. This is largely possible due to the convenient form of the 

equations when the state equation is written in the phase-variable 

form. 

3.4 Necessary Conditions 

In the previous section the following equations were derived fur 

determining the performance index as defined by the quadratic form in 

the system state: 

'I' 
A%&- l-a:- lZ.n- 1- . . . -a*Z 0-0 + ~8 I ~ - ~ -  X W_ = 0 

where all system coefficients are known as functions of the variable 

parameters as well as the free design parameters. t 

'~rom here on all system coefficients, as well as functions and 
derivatives of these coefficients, will be evaluated using norninal 
values of the variable parameters. The ( * )  notation will the~refora 
be dropped. 



The necessary condition for to be at a local minimum for specified 

values of the design parameters is that its variation with respect to 

thess parameters be zero to first order. A standard method for 

obtahning the variation of a functional in the presence of contraining 

equations is to add the constraints to the functional by the use of 

Lagrange multipliers. Thus the performance index is augmented to give: 

where El, P and A. are nxn matrices of Lagrange multipliers. The -2 ' -1 

traces of the matrix products, which are added to the performance 

index, axe sufficient to constrain each element of the matrix equations. 

This is seen from the fact that the trace of a matrix product can be 

written as: 

where the right hand side consists of the sum of simple products in 

terms of the elements of - P and M - with no common factors in any two 

product terms. This is just the type of expression needed to constrain 

each element of M_ to zero. 

The variation with respect to the free design parameters will be - 
2encted by 6 in order to distinguish it from the variation due to 

the variable system parameters, which is indicated by 6. The necessary 

c o n d i t i n a i s  are determined by requiring the variation of with respect 

to each of the quantities, 5,  6X - and L ,  to be equal to zero. Thus, 



considering the effect on '5 due to a variation of 5 we get: 

where the following matrix property has been used. 

where AB - is a square matrix. The following equation is then obtained 
,., 

for P?, since 6X - is, in general, non-zero: 

The variation with respect to 6: - is, similarly: 

which results in the equation for P2: 

In order to find the variations due to the Zi matrices it is necessary 

to rewrite the term tr (P2g) in Equation (3 .50)  since - U is a function 

of the gi matrices as expressed by Equation (3.46). P2 is a s y m e t r i c  

matrix as can be seen by transposing Equation ( 3 .60 )  and using the 

fact that - Q is symmetric. The product of P2 and - U can then be written: 



The trace of this product can then be expressed as: 

Tie variation of 3 with respect to gQ is then: 

which results in the following relationship between hl and An: 

Taking the variation with respect to Z for l<i<n gives: i-1 - 

which then leads to the equation: 

Equations ( 3 . 5 8 )  and (3.60) can now be used to solve for all the Ai 
matrices, 



Finally it remains to determine the variation of 5 due to ail 

the terms which are explicit functions of the free design parameters, 

These are all the terms containing the system coefficients and initial 

conditions or perturbations of these with respect to the variable 

system parameters. Thus: 

- h  Z 6a ] - A X ~ W ] = O  
- - - 1  i-1 -n- - 

i= 1 

where some of the terms have been rearranged using the matrix identity: 

T T T T 
tr (AB) -- = tr (B - A  - ) = tr (A - B - ) 

It is necessary to express the variations of the quantities in. 

Equation (3.61) in terms of the first order variation of the free 
- 

design parameters, 6 ~ .  Using the definition of A_, the followi.ng 

expression is. obtained: 

where - nT is an n-dimensional vector defined by: 

- - 
Thus, all the terms in 6 J  containing 6A - can be rearranged in tihe 



following manner: 

F,urthermore, using the definition of zO as given in Section 3.3: 

- 
The corresponding term in 65 can then be rearranged: 

The following equations are obtained in a similar fashion: 

UsFng the definition of t h its derivative with respect to the j- 

parameter can be written: 

th wh~ch is the j- column of the derivative matrix in Equation (3.67). 

The terms containing qO and W - are somewhat more complicated. Using 

the expression for qO given by Equation (3.64): 



th The variation due to the j- parameter can then be written: 

where the fact that P2 is symmetric has been used. 

The total variation of this term can then be written: 

where 

Similarly we have that: 

and 

where 

Collecting all the above terms, the variation of 5: can be now be 



written in the form: 

The expression in the brackets must be equal to zero for this 

equation to hold. All the necessary conditions for a local minimum 
- 

of J are summarized below: 



The set of free design parameters which satisfies all these equations 

determines a local minimum of the performance index 2. The method for 

numerically obtaining this solution is discussed in Chapter 4,  

The next two sections are devoted to the discussion of two specific 

performance indices which have been found useful in system design, 

The first of these has the same form as the performance index which 

has been used in the previous sections, with a systematic procedure 

for determining the weighting matrix. The second performance index is 

the well-known integral square error criterion (ISE), which is defsned 

in terms of the error response of the system as compared with a 

reference model response. The ISE thus contains the model response 

anted, explicitly and this requires that the necessary conditions be a u p -  

3.5 The Model Performance Index 

The model performance index was formulated by Rediess [311 and 

gives a systematic method for determining the state weighting matrix 

in the quadratic performance index commonly used for optimizing the 

design of linear feedback control systems. When the performance index 

is minimized, the system response becomes close to or identical to 

that of a specified model response. Moreover, the model's time response 

is not included explicitly in the cost function. The unit step 



function is used as a standard input, although other inputs could be 

used, The original derivation of the model performance index given 

in Reference [311 is based on a geometrical interpretation of the 

system state equation in the phase-variable form. A somewhat different 

interpretation will be given in this section, based on the error state 

equatio:ns of the system where the error state is defined as the 

differe:nce between the system state and the state of a reference model. 

3-5-1 System Error Equation 

The system transient response is described by the equations 

derived in Section 3.2: 

where the system matrix is in the phase-variable form and the initial 

condition vector contains the effects of the step response and system 

zeros, The desired system response is taken to be described by a 

model state equation of the same form: 

where ( " )  refers to the model. Assuming that the model is of the 

same order as the system, the error equation can be written: 

and 



The homogeneous part of the equation is identical to the model equation 

with the model state replaced by the error state. The forcing term is 

expressed only in terms of the system state. The error response can 

then be obtained as shown in Figure 3.1. 

In a practical situation, however, the model is commonly of a 

lower order than the system order. The same error equation can be 

used in this case but the model equation must be augmented such as to 

be compatible with the system equation. This can be done by observing 

the fact that the model's state space is a subspace of the system state 

space. The model equation in n-dimensional space can be written as: 

where R is the order of the model (R<n) and the a's denote its 

characteristic coefficients. Thus, the dimension of the model equation 

has been made equal to the system order by the addition of zeros to 

th 
the model matrix. The state vector has also been augmented to n- 

dimension but it may be noted that the last (n-R) states are 

identically zero for all time. 





This augmented model equation can then be used in the error equation 

(3.77). It is clear that the last (n-R) error states are equal to the 

corresponding system state variables: 

since the last (n-R) model states are zero. 

The error state equation will now be used to give a simple 

interpretation of the model performance index. First, only systems 

and models without zeros in their transfer function will be considered. 

3.5.2 Systems without Zeros 

It can be seen from the expression for the initial conditions 

Equation (3.11), that for systems which have no zeros in the transfer 

function, all but the first initial state are zero, since in this 

case m=O. This state is, furthermore, equal to the negative of the 

system's static sensitivity. Assuming that the system and model have 

equal static sensitivities, this initial error state is also zero, 

This assumption is reasonable, since in most practical situations the 

steady-state output error, due to a unit step input, will be required 

to be zero. 

The development differs slightly depending on whether the 

dimension of the model, R, is less than or equal to the system's 

dimension. 

Consider first the case where R= n. The error equation, written 

out in detailed form, is in this case: 



T T where - a = (ao,al,...,an-l) a n d 2  = (~1~,a~,...,a ) are the coeffi- 
n-1 

cients of the system's and the model's characteristic equations, 

resgectively . 
There are two potential sources of excitation for this equation 

as seen in Figure 3.1. First, any initial error will result in an 

error response. For systems without zeros in the transfer function 

this effect does not have to be considered, since the initial error 

state is zero as seen above. The second source is the scalar input: 

which is the only forcing term in Equation (3.79). 
h 

Sirlee the model coefficient matrix A - is a specified constant matrix 

the error response can only be influenced by changing the input to the 

eqcations. It is clear, for instance, that the error response is equal 

to zero for all time when i(t) = 0 as there is no disturbance to the 

error state equation in this case. Thus one obvious way of reducing 

the error between the response of the system and the model is to 

minimize some measure of the input excitation to the error equations 

which, fortunately, happens to be a scalar when the equations are 



written in the phase-variable form. One such measure is the time 

integral over all time of the square of this input: 

x (a-a) (a-a) x dt - - -  - -  - 3-81] 

The weighting matrix in the quadratic cost functional has thus been 

determined as: 

This cost function can then be minimized with respect to the specified 

design parameters. Note, that Q - is a function of - a when R=n, which 

makes it a function of the system design parameters. 

Consider now the case where the model's order is less than tbat 

of the system, i.e. Rcn. The model equations are augmented and the 

error state equation becomes: 

It may be observed from the homogeneous part of this equation tbat the 

higher order error states, Ax~+~...Ax~, do not affect the lower order 

error response directly. In fact the only excitation of the first R 

error states is the scalar input: 



where - 6 is an n-dimensional vector defined by: 

It is seen from Equation (3.83) that the responses of the first R states 

are identical for the system and the model when i(t) = 0, since in 

this case the first R error states are undisturbed. Actually this 

could only occur when the last (n-R) system states are zero for all 

time and therefore identical to the corresponding model states. 

Because the model, in reality, only specifies the desired response 

of the Eirst R state variables of the system, there is no need to 

cans t r a in  the response of the last n-R states except for its influence 

on the lower order states. This influence is represented by the term 

"g-a. in the input excitation to the lower order error response. 

The cost function is now formed as before: 

and the state variable weighting matrix is: 

It has been shown above that the model performance index can be 

interpr~eted as a quadratic measure of the scalar forcing term of the 

error state equation. It is interesting to note that all the terms 

making up this input term are dimensionally consistent. The units of 

i ( t . 1  must be the same as those of the derivative of the 2% error 



state as can be seen from Equation (3.83). If this input is regarded 

as generalized "power", the model performance index is a measure of 

the "energy" driving the error equation. 

The sensitivity term in the expected value of J can also be given 

a simple interpretation in terms of the input to~the error model when 

R<n. The variation of i(t) can be obtained in this case from Equation 

(3.84) as: 

2 Using Si (t) as an integrand in a sensitivity index gives: 

whose expected value is identical to the second term of Equati.on ( 3 , 2 3 ) ,  

3 . 5 . 3  Systems with Zeros 

The effect of zeros in the transfer function is represented by 

the last m initial states of the transient response as is seen from 

Equation (3.11). The corresponding initial error states are therefore 

non-zero, in general, and must be considered as a disturbance to the 

error equation in addition to the excitation input term. Rediess 311 

solved this problem by adding a quadratic term in the initial error 

state to the performance index, such that: 

In this way both sources of excitation to the error equation have been 

included in the performance index which is then minimized as before, 

The weighting matrix, W_, is a positive definite matrix which determines 

the relative importance of the initial error states as well as the 



weighkirbg of this term relative to the integral term. Within the 

constraint of being positive definite,its choice is arbitrary. This 

presents a difficulty since there is no simple method for determining 

the relative effects of these terms. 

A different approach will be taken here which eliminates the need 

for including the initial error states in the performance index at the 

cost of some restrictions in the choice of the model representing the 

desirable response. It is convenient to use the transfer functions 

of the system and the model for this derivation rather than their 

state-space realizations. 

It was seen in the previous subsection that the error response of 

systems without transfer zeros can be obtained by passing an appropriate 

input signal through the model equations. Thus, it is assumed that 

the error response of any system can be obtained as shown in Figure 3.2. 

The output error Ay is equal to the corresponding transient error Ax, 

sicce the steady-state outputs of the system and the model are taken to 

be equal., 

Figure 3.2 Error Response 

The error response can be written as: 

A 

where G ( s )  and G(s) are the transfer functions of the system and the 

model, respectively, and u(s) is the transform of the step input in 

this ease. From Figure (3.2) we have that: 



These two equations give the following expression for i(s): 

In the case of systems and models without zero i(s) can be w r i t t e r ?  as: 

h 

where the transfer function of the model, G(s), is given by: 

Transforming i(s) into the time domain gives: 

i(t) = 1- b o y  (t) +alY(t) +. . .+aQ-ly 
0 

(t) + y(R) (t) 

since u(t) is the unit step function and the system is at rest initially. 

From Equation (3.1) we have that for a stable system: 

bo lim y(t) = a 
t+a 0 

which in turn can be used to show that: 

a0 bo lim i(t) = - g - - 1 =  0 

t+m 0 0 

as all the derivatives of y(t) must go to zero in steady-state and 



"0 b~ --- - = 1 by the assumption that the static sensitivities of the system 
"8 

and modtsl are equal. Equation (3.95) can then be written in terms of 

the transient response as: 

1 i (.t) = - [sox (t) + alx (t) +. . .+ aR-l (t) + x ('+') (t) 1 (3.96) 
6 0  

For R<n, i.e. a model of lower order than the system, i(t) can be 

written in the form: 

where x(t) - is the system state vector as described by Equation (3.5). 

This expression for i(t) is identical to the forcing term in the error 

equation (3.83) except for the division by the constant, BO. The 

performance index for R<n is then defined by: 

which is identical to the performance index as defined by Equation 

63-85), except for the constant factor. 

Consider now the case when the model is of the same order as the 

system, i.e. R=n. Equation (3.96) can be written in terms of the 

system state vector by substituting the following expression for x ( ~ )  (t) : 

which is; obtained from the state equation (3.5) . i (t) then becomes: 



which is proportional to the input to the error equation (3.79) for 

this case. The resulting performance index is also equivalent to that 

of Equation (3.81). This approach, therefore, leads to the same 

result as was obtained in Section 3.5.2 for systems without zeros, 

Consider now the case of systems and equations with zeros in 

their transfer functions. Equation (3.92) can now be written as: 

This equation can be written in the form of Equation (3.93) by defining - 
a new system, whose transfer function, G(s), contains the zeros of 

the model as system poles in addition to the regular system transfer 

function : 

t h This expanded system is of (n+k)- order and it should be noted 

that the new system poles are cascaded to the original closed--loop 

transfer function. Hence, they do not affect the behavior of the 

closed-loop transfer function directly. 

Thus, the zeros have been removed from the model and cascaded as 

poles to the system transfer function. The output of this new system 

is expressed by: 



Using this result, Equation (3.101) can be written as: 

1 R-1 its) = - (sR + a 
8o R-lS 

+. . .+ als + aO) ;(s) - u(s)] 

{n+k)-m the time domain version of this equation is: 1 
1 

- ?C 

i!t) = - (soy (t)+aly (t)+. . .+aRR1y -(R-l) (t) + ;(%) (t) 1 -1 (3.104) 
80 

 his folLows from the fact that the first n-m-1 derivatives of the 

o u t p u t ,  in a system with n poles and m zeros, are zero at t=0+ for a 

step input. This can be verified from the system equations of Section 

2 - 2 ,  As a result: 

i g [ y ( i )  (t) I = s y(s) O<i<n-m - - (3.105) 

In the expanded system, n-m is simply replaced by n+k-m since k 

poles have been added to the system equation. Equation (3.104) is 

then written in terms of the transient response: 

1 
1 

-(R-l) (t) + (t) ) i ( t )  = -(a I(t) + a I(t) +. . .+aR,l~ 
60 

(3.106) 

where the static sensitivities of the system and the model are taken 

to be equal as before. 

For a model, whose number of excess poles over zeros is equal to 

or less than that of the system, i.e. R-k<n-m, - i(t) can be written: 

- 
where - x ( t )  is the state vector of the expanded system equations in the 

homogeneous phase-variable form, which consists of the transient output 



response and its derivatives. For R-k<n-m, - the performance index i s :  

- 
with the state vector, - x(t), described by: 

. 
where A - is the coefficient matrix of the expanded system and the initial 

condition is given by Equation (3.11), substituting the coefficients 

of the extended system equations. 

When the model has more excess poles over zeros than the systea, 

i.e. R-k>n-m, some care must be exercised in transforming Equati0:n 

(3.103) into the time domain. Consider, for instance, the case when 

9,-k = n-m+l. The transform of ;") (t) is now: 

" (n+k-m) (0+) is non-zero, in general, as can be since R-1 = n-t-k-m and y 

th seen from the (n+k-m)- row of the state equation (3.2) for the expanded 

system: 

where the system is at rest initially. The following result can then 

be obtained from Equation (3.110) by inverse transformation: 



where 6 ( t )  is the Dirac delta function. i(t) would, therefore, contain 

the d e l t a  function in this case, which is unacceptable. Nigher values 

of (2-k) result in even more complicated expressions for i(t). For 

this reason, the model will be required to satisfy the condition that 

(R-k?<(n-m). - This is not a serious restriction, since it is not clear 

that anything is gained by using a model with more excess poles over 

zeros than the system. 

To summarize, it has been shown that the difficulties associated 

u i t h  defining the model performance index, when the system and model 

coatain zeros, can be avoided by restricting the model from having more 

excess poles over zeros than the system. Furthermore, any model 

zeros are removed from the model transfer function and added as 

cascaded poles to the system transfer function. This transformation 

of t h e  problem has been shown to be consistent with the definition of 

the model performance index in terms of the excitation input to the 

error model, 

The technique of adding the model zeros as poles to the system 

can be given a simple interpretation, when the model and the system 

contain an equal number of poles and zeros. If it is assumed, 

furchermare, that complete matching of the model and system responses 

can be achieved, the model zeros represent desired locations of the 

system zeros. When the model zeros are added as fixed cascaded poles 

to the system, the resulting model contains only poles. When the 

performance index is minimized to obtain complete matching of the system 

and n.odeL responses, the system zeros must be moved such as to cancel 

w r t 3  the new system poles at the same time as the original system 

poles betsome identical to the model poles. But this is the same as 

matching the system zeros and poles to those of the model, which is the 

desired result. 



For systems without zeros, the weighting matrix of the model 

performance index becomes a function of the characteristic coefficients 

when a model of equal order is used, as can be seen from Equatioc 

(3.81). This is a computational inconvenience, particularly when 

considering the expected value of J due to parameter variations, which 

can be avoided by using the technique of expanding the system equations. 

Thus by adding a cancelling pole and zero pair at some convenient 

location to the system transfer function, the system order has been 

increased by one over the model, but the number of excess poles over 

zeros is equal for both. The method described in this subsection can  

then be applied, resulting in a constant weighting matrix for the 

performance index. 

It should be noted that the expansion of the system is achieved 

by adding singularities to the transfer function after all loops have 

been closed. These new singularities, therefore, do not affect the 

loci of the closed-loop roots. 

More detailed information about the model performance index can 

be obtained from References [311 and [321. 

3.6 The ISE Performance Index 

The integral square error performance index can be defined as a 

quadratic expression in terms of the state vector of the error model 

in Figure 3.2: 

where Ax - is defined as the differerrce between the system and model 

responses. The difference between the model performance index and the 

ISE index is that the MPI focuses on the input to the error model 

whereas the ISE index is defined in terms of the output of the errer 

model and is consequently a more direct measure of the difference 



between the system and model responses than the MPI. 

The disadvantage of the integral square error index is that it 

contains the model response explicitly, which increases the computational 

task, In addition, there is no systematic way of selecting the weighting 

m a t r i x  in Equation (3.113). In most cases only the first element of 

Ax has been used, i.e. the scalar output error. Addition of derivatives 

of -he output error can then be made on a trial and error basis. 

The equations derived in Sections 3.3 and 3.4 must be augmented 

in order to accommodate the integral square error index. First, 

Equation (3 -113) can be written: 

since - Q is a symmetric matrix. If the model is of lower order than 

th 
the system, its state vector can be augmented to n- dimension by the 

addltion of zeros. Taking the expected value of J gives the following 

r e s u l t :  

since the nominal response of the system is also its expected value 

and the model response is deterministic. By comparison with c qua ti on 

(3,231 it is seen that the expected value of the ISE index contains 

two additional terms, both of which are deterministic. These terms 

car? be written as: 



where 

;=Jm,%:dt and - 
0 

Assuming that the equations of the system and the model are in 

the standard observable form of Section 3.2, the following equations 
* A 

are obtained for X and Y - using the approach of Section 3.3: 

where 

A A 

A AT and X = x x  
AT 

-0 -0-0 %=  xoxo 
A 

A - and A - are the .system and model. coefficient-matrices, respectively, 
A 

as before and - Y is an nxR matrix. The corresponding terms in the 

necessary conditions for a minimum of 3 must also be determineci, Tke 
I\ 

equation for - X is only dependent on the model response and is, conse-. 

quently, not a function of the free design parameters. There is, 

therefore, no need to adjoin Equation (3.117) with Lagrange multipliers 

to z, since it is always satisfied despite variations of the free 
design parameters. 

Equation (3.118), on the other hand, is a function of these 

parameters and must be adjoined to 3. The following term is then 

added to the performance index: 



where E3 is a matrix of Lagrange multipliers which by taking the 
A 

variation of 7 with respect to - Y is found to satisfy the equation: 

h 

The variation of the term (3.119) with respect to A - and Yo result in 

the following terms, which must be added to Equation (3.741, expressing 

the variation of 5 when all the constraining equations are satisfied: 

where - II was defined as an n-dimensional vector: 

Thus, all the equations for computing the expected value of the 

integral square error index have been determined as well as the necessary 

conditions for a local minimum of its value. Specifically, it is now 

necessary to find the solution of two additional matrix equations in 

crder to determine the value of the ISE index as compared with the 

performance index containing only the system response. The problem of 

compating the minimum value of 7 and the corresponding free design 

parameter values is discussed in detail in Chapter 4. 

3.7 Example Problem 

A simple example, which shows the effect of using the expected 

vaiue o f  the integral square error performance index, will be given. 

3.1 

The plant consists of a simple integrator with variable static sen- 

s i k i v i t y  whose nominal value can be chosen. The desired response is 



represented by the step response of a first order model with the 

transfer function: 

An identical nominal response can be obtained for the system by 

adding a feedback path around the plant as shown in Figure 3.3 and 

choosing the nominal open-loop static sensitivity equal to unity as: 

Figure 3.3 System th Unity Feedback 

This system is relatively sensitive to changes in SOL as can be seen, 

for instance, from the variation of its pole position, which is given 

by: 

Any change in SOL, therefore, results in an equal change in p l .  In 

order to decrease the sensitivity a zero may be added to the feedback 

path as shown in Figure 3.4. 



Figure 3.4 System with zero in Feedback 

The tran.sfer function of the system is given by: 

where S and z are free to be chosen. The nominal response of the 
OL 1 

system can be made identical to the model response by choosing: 
/ 

a = So~zl 
0 

= 1 (3.126) 
 so^ + z1 

in which case the variation of the system pole becomes: 

Squation (3.126) determines an infinite number of combinations 

of the design parameters which result in a nominal response identical 

to that of the model. The addition of the zero in the feedback path, 

therefore, provides increased freedom in the design, which is not 

required in order to satisfy the requirements on the nominal response, 

but could possibly be used to reduce the effect of changes in the 

static sensitivity on the system response. From Equation (3.127) it 



is observed that, for a specified percentage change in S the 
OL ' 

resulting variation of the pole can be made arbitrarily small by 

choosing a large nominal value of S 
OL ' 

The ISE index for this first order problem can be written: 

M A  rS U) G2 dt - 2 L  a h 

(x-x) dt = x2 dt + x x dt 

A 

where x and x are the transient responses of the system and model to 

a unit step input, respectively. These integrals can be deter~nilred 

in terms of the system and model coefficients by solving Equations 

(3.27), (3.117) and (3.118), which are scalar equations for a first 

order system. Thus, we have that: 

A h 

where xll, xll and yll denote the three integrals in Equation (3.1281, 

which by substitution of their solutions becomes: 

Clearly, J=0  only when the transfer function of the system is identical 

to that of the model, i.e. a = ao.  The expected value of J can now 
0 

be written as: 



L 
- (a; - a o )  
J = 2a* a (a* + aO)  

0  0  0  

where the nominal values are denoted by an asterisk and 6x is the 

variation of the system response to changes in S 
OL ' The value of the 

integral term can be determined by solving Equations ( 3 . 3 4 ) , ( 3 . 4 0 )  and 

1 3 - 4 3 )  for this problem, recognizing that 6 x 0 = 0 ,  since the closed-loop 

static sensitivity is always equal to unity: 

where Sx denotes the integral term and w=6a Z 
11 0  ' 

The solution of these equations, using the previously obtained 

solution for xll, gives the following result: 

Assuming that the response of the system is constrained to be identical 

to the model's response for the nominal value of SOL, the first term 

of 2 is zero. 3 is then equal to the second term, which represents 

the effect of the parameter variation on the expected value of the 

performance index. For the first configuration with unity feedback, 

this term becomes: 

since a = SOL and a = 1. The expression for the second configuration 0 0  



is similarly obtained as: 

It is reasonable to take the mean square value of the percentage 

variation in S to be constant, since this variation is unlikely to QL 

be affected by the choice of the nominal value. This nominal value 

is fixed for the unity feedback system and there is no way of reducing 

the value of Exll without changing the output response. The addition 

of a zero to the feedback allows SOL to be chosen freely, with. the 

value of zl determined by Equation (3.126) under the assumption of 

perfect model following. With 6xll inversely proportional to the 

square of the static sensitivity, it is clear that S& would be 

chosen as large as possible. As SOL approaches infinity we have from 

Equation (3.126) that: 

lim zl = lim - = 

Hence, the expected value of the integral square error index is 

minimized, in theory, by placing the feedback zero at the desired pole  

location and using infinitely large gain. In practice the available 

gain is limited and S6L would be chosen to be at its upper limit, 

The response of the system with the unity feedback is shown in 

Figure 3.5 for the nominal value of SOL as well as for +50% - v a r i a t ~ o n  

from that value. The corresponding responses of the system with a 

transfer zero in the feedback path are shown in Figure 3.6, where S* QL 

=3, which is arbitrarily chosen as the upper limit of that value, The 

corresponding zero location is at z = -1.5. 1 

The nominal responses are identical by constraint, but it is 

clear that the deviations of the second system configuration to 

changes in the gain are considerably smaller than those of the 
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F i g u r e  3 . 6 .  Response o f  sys tem w i t h  z e r o  i n  feedback  





system with unity feedback. Thus, the response envelope in Figure 3 . 6 ,  

whlch is determined by the high and low values of S falls completely 
OL ' 

within the corresponding envelope in Figure 3 . 5 .  The sensitivity 

functions of the two configurations are plotted in Figure 3 . 7 .  These 

are proportional to the first order deviations of the system responses 

and are in fairly good agreement with the actual deviations. 

The sensitivity of the first order system to changes in gain has 

been significantly reduced by the addition of a transfer zero to the 

feedback path to provide the additional freedom in the design and by 

uslag the expected value of the performance index as a guide in the 

selection of the design parameters. The nominal responses of the 

systen;  were required to be identical to the model response in order 

to observe the effect of the second term in 5: separate from the nominal 

term, This would not be done in most applications unless there was 

a specific requirement on the nominal response. 

The implicit assumption has been made here that the location of 

tie feedback zero is absolutely stable. This is not necessarily the 

case and the effect of variations of zl on the solution will now be 

ex2Lored. The nominal responses are still required to be identical 

tc that of the model. The design with unity feedback is independent 

of the zero variations and is, therefore, unaffected. The effect of 

ths parameter variations on the second design is again expressed by 

the second term of the performance index, which in this case becomes: 

where it has been assumed that the two variations are uncorrelated. 

The restriction on the nominal performance gives the following 

relationship between S* and zf: OL 



which by substitution into Equation (3.137) gives: 

This expression can now be minimized with respect to SGL by 

setting its derivative equal to zero. The corresponding values of S*  O L  

and z? which are the design values, are: 

It may be noted that as the mean square value of the relative zero 

variation becomes small,S* approaches infinity, which is the solution OL 

obtained previously for a perfectly stable zero. When this mean square 

value becomes infinitely large, on the other hand, S& approac:hes 

unity and the nominal location of the zero becomes infinite. But this 

is identical to the solution with unity feedback. -This result: indicates 

that the zero in the feedback can always be used to reduce the sensi- 

tivity of the system, as defined by the term 6xll, regardless of the 

variations in its location. This can be shown by substituting the 

expression for the design value of ScL into Equation (3.139): 



For the same gain variation this value is always smaller than 

the corresponding value for the unity feedback system, as given by 

Equation (3.134), although the reduction becomes insignificant when 

the zero variations become large. It is interesting to note that the 

amount of reduction in sensitivity achieved by adding the zero, depends 

only on the ratio of the mean square values of the relative parameter 

variations. 

F i n a l l y q r ,  ehe integral square Error index, as given by Equation 
z 
1 and - in Figures 3.8 and 3.9, (3,130),, is plotted as a function of - 

S;;~ 
z* 
1 

respectively, for a number of values of the parameter variation ratio, 

The nornirlal design values are given by Equation (3.140) as functions 

sf this ratio. One of the parameters is held constant at its nominal 

value while the other is varied in order to determine the values of J. 

In Figure 3.8, the system with unity feedback is represented by 

y=O, since in this case the zero has infinite variation about its 

nominal and is removed from the system altogether. When this variation 

decreases relative to that of the static sensitivity and the effect 

of the feedback zero is increased, the curvature of the ISE index as a 

function of $ is decreased at the minimum. The effect of the 
 so^ 

persentaye variation in S which is a specified constant, is therefore 
OL ' 

decreased and becomes zero in the limit when the feedback zero location 

is perfectly stable, i.e. y=w. The opposite effect may be observed 
Z 
1 for the ISE index as a function of - from Figure 3.9. As the effect 

z $  





F i g u r e  3.9.  The ISE  Index as a f u n c t i o n  of z l  



of the feedback zero is increased in order to decrease the system sen- 

sitivity to changes in S the curvature of the ISE index is incrreeised, OL ' 
This clearly makes it more sensitive to a given percentage change in 

z as the value of y decreases, i.e. as the zero location becomes more 1 z 
1 stable. On the other hand, the actual variations of becorn€ smaller 
1 

as y decreases, since the percentage variation of S is const.ant, OL 

The price paid for reducing the sensitivity of the system to changes 

in SOL, hence, is not as high as might be expecked from Figure 3 - 9 -  

The improvement in system sensitivity, as measured by the sensi- 

tivity index 6xll of Equation (3.137), is basically obtained by 

distributing the effect of parameter variations on the system between 

the two independent parameters according to their relative st~ibiLitl7, 

Since it is statistically less likely that worst case conditions occur 

when two independent parameters are involved than in the case of a 

single parameter, an improvement is achieved as measured by the 

influence of the variations on the expected value of the perfc,rmance 

index. 

3.8 Multivariable Systems 

So far only single input/output systems have been considered, 

As is well known, the various transfer functions relating the outputs 

to the inputs of a multivariable system all have the same poles, with 

the differences confined to the zeros. In many applications the 

system requirements make it necessary to specify the desirable char- 

acteristics of more than one of these input/output transfer functions. 

A straightforward approach to such problems is to treat them as 

separate but simultaneous problems. Thus, when the model responses 

of two such transfer functions are specified, a performance index car. 

be formed for each of them. The simultaneous design process is then 

implemented, for instance, by minimizing the weighted sum of the two 

indices, which constitutes an overall system performance index. The 



emphasis on a given transfer function can then be varied by changing 

its corresponding weighting factor. The computational effort in 

f~nding the minimum of this new index is multiplied by the number of 

tracsfer functions considered, when compared with the effort required 

for a single input/output system. When only a few such transfer 

relationships have to be considered, such as is the case in most 

flight control systems, this is by no means an impractical task using 

the nun~erical methods described in Chapter 4. 

A variation of this method consists of selecting mutually 

exclusive subsets of the design parameters with each set corresponding 

a specified transfer function. The individual performance indices 

are then minimized one at a time varying only the appropriate subset 

cf the design parameters in each case. The problem is, in effect, 

separated into a series of single input/output problems which must be 

s ~ L v e d  in an iterative manner until a satisfactory result is achieved. 

It is not clear, however, that the computational task is any less in 

c h j s  case than is required for the minimization of the total perfor- 

xance index. 

These methods are discussed in Reference [311 in terms of the 

model performance index, but other indices could be used as well. 

3 - 9  Effects of Noise - 

Th.e reduction of system sensitivity to parameter variations is 

very often obtained by significantly increasing the bandwidth of the 

feedback path beyond the bandwidth required by the nominal condition. 

Tk-s has the undesirable effect of amplifying sensor noise, for 

~ n s t a a c e ,  which enters the system at the feedback level. It is, 

cherefc~re necessary to give some consideration to how this effect can 

be taken into account in the design process. 

A simple but practical approach is to estimate the maximum 

toiesraklle bandwidth from the knowledge of the power spectrum of the 



noise. This estimate can then be used to determine the permissible 

range of one or more of the design parameters. Numerous methocls are 

available for constraining the values of these parameters. 

A more systematic method, which is also compatible with the 

general design process, consists of defining a cost function representing 

the effects of the noise on the system output and adding it to the 

system performance index. One common function of this type is the 

mean value of a quadratic form of the system state vector, which is 

excited only by the noise input: 

where the weighting matrix may or may not be the same as the matrix 

used in the other terms of the performance index. The input noise 1s 

assumed to be Gaussian and can, therefore, be produced by passing 

uncorrelated white noise through an appropriate shaping filter, I n  

the following derivation it is assumed that the transfer function of 

the shaping filter has already been determined and is included in -he 

overail system transfer function. The state equation of the system is 

taken to be in the standard observable form of Section 3.2: 

where A - is in the phase variable form as usual and u(t) is the w h i t e  

noise input which is defined by: 

where 6 ( t )  is the unit delta function. The equation for the c:ovariance 

matrix of the system state can now be derived, using the state 



equation: 

Since the output of a linear system, excited by white noise, is 

a stationary process, 5 is time invariant. Hence, its time 

derivative is equal to zero and the equation becomes: 

It is xiow necessary to determine the cross correlation between the 

i ~ p u t  and the output. This is done by expressing the solution of the 

state equation in the well known form: 

wkere - (p(t,t ) is the state transition matrix satisfying the homogeneous 
0 

state equation: 

Mu1tip:Lying Equation (3.146) by u(t) and taking the expected value on 

both. sides gives the following result: 

The input and the initial condition vector are uncorrelated and only 

the steady-state output is considered such that the first term of this 

equation is zero. Equation (3.143) can then be substituted into the 



integral in which case: 

This result, as well as its transpose, is then substituted into 

Equation (3.145) to give: 

The value of the cost function on noise can, therefore, be 

determined by solving the same basic matrix equation as the one used 

to find the value of the quadratic performance index, except that the 

system matrix now includes the coefficients of the shaping filter as 

well as those of the system. The necessary conditions for a local 

minimum of this cost function can be obtained in the same manner as 

before and added to the previously derived equations in order to farm 

the necessary conditions for the total performance index. 

The addition of the noise cost function to the system performance 

index increases the amount of computations which must be performed ~ r a  

order to determine its minimum as was the case with multiple i n p u t /  

output systems. The numerical methods of Chapter 4 allow this task to 

be performed in a practical way although this will not be done in fhrs 

report. 

3.10 The Inverse Sensitivity Problem 

The specification of component tolerances is an important part 

of any control system design effort. One method for determining 

these tolerances is to simulate the system dynamics and observe the 

effect of changes in the component parameters on the response. 

Although such a simulation is likely to be performed in the final stages 

of the design process it may be undesirable to do so in the early seages, 



The meehod of inverse system sensitivity may be used in this case to 

make a quick estimation of these tolerances, especially when a 

performance index in the quadratic form is used in the design process 

One approach to the inverse sensitivity problem would be to 

specify the maximum permissible value of some sensitivity index and 

find the corresponding component tolerance which, in general, would 

not result in a unique solution for multiple parameter variations. 

Such a sensitivity index was defined in Section 3.3 as the quantity, 

whlch represents the first order effect of parameter variations on 

the expected value of the performance index: 

- 
The matrix, 6X, - was then found by solving Equations ( 3 . 2 7 ) ,  (3.34), 

63-40] and (3.43), knowing the covariance of the parameter variation. 

Specifying the value of J does not, however, determine a unique value 
S 

of 6X, - Even if this matrix were to be specified, the aforementioned 

eqcations are not very suitable for determining the corresponding 

corariances of the system coefficients, which are contained in the go, 
W - and V - matrices of Section 3.3. 

A much simpler approach can be taken, using the linearity of 

rhese equations. Thus, it is only necessary to compute the value of 

2 for a single variation of a given parameter in order to determine 
S 

for all possible variations of this parameter. Assume, for instance, 
- 

2 
that J is computed for 6c1, a specified mean square value of the S 

variation of 5. The value of JS for any other mean square variation 

of this parameter is then given by: 



since Equations (3.27), (3.34), (3.40) and (3.43) are all linear in 

the solution matrices as well as the parameter covariance matrix, - R, 
- 

2 which in this case contains only a single element, 65 . If the 

variations of any two parameters are uncorrelated, it can furthermore 

be shown that their contributions to the sensitivity index are 

additive, i.e. the total value of JS is obtained by superimposing the 

effects of the independent sources. The contribution of correlated 

variations are then computed simultaneously. 

These properties can be used to estimate the permissible range 

of the parameters under investigation. The relative effects of 

~ormance changes in the various independent parameters on the system perf 

can be determined by comparing the contributions of unit variations to 

JS. This allows a quick trade-off between the parameter tolerances 

to be made. An estimate of the actual value of these tolerances can 

also be made, assuming that the maximum value of JS can be specified, 

A method, which could possibly be used to determine this value of JS, 

consists of computing the variation in the system response as one 

parameter is changed by one standard deviation, for instance. By 

computing the corresponding value of J a correlation between the S 

deviations of the response and the sensitivity index can be 

established. The first order example of Section 3.7 will be used to 

illustrate the use of this method. 

Example 3.2 

Consider the system shown in Figure 3.4 with S and zl as the 
OL 

free design parameters. The model response is the same as before and  

it is assumed that the nominal values of the design parameters have 

been chosen as: 



StL = 3 and z* = 1.5 1 

These values cannot be changed, but the bounds of the variations of 

SOL and z1 are to be specified. The variations of these parameters are 

taken to be independent in which case JS is given by Equation (3.137) 

where the nominal values of the design parameters have been substituted. 

This expression shows that a specified mean square relative change in 

z has four times as much influence on the expected value of the 1 

performance index as has the same change in SOL. If no other informa- 

tion is available about the system components the relative tolerances 

of the parameters may be specified such that: 

with the objective of achieving a balanced design in the sense that 

an equally likely variation of either parameter have the same effect 

on the performance index. 

A correlation between the value of JS and the actual deviation 

of the response can be obtained from Figure 3.6 which shows the system 

response for 2 50% variation of the static sensitivity. Assuming, 

for the moment, that this is the standard deviation of a single 

variable parameter, namely SOL, the value of JS is found to be: 



Using this value as the maximum value of J and the previously 
S 

determined ratio of the variations, the desirable values of the mean 

square variations can be computed from Equation (3.153) as: 

The tolerances may then be set at plus or minus one standard deviation, 

for instance, in which case: 

max . 

- 1 - - =  " .18 

max . F 

The off-nominal responses of the system are shown in Figure 3-10 

for the maximum allowable variations of each of the two parameters, 

The envelope of the output deviations due to variations of the open- 

loop gain is clearly very similar to the corresponding envelope for 

variations of the zero location. This is in agreement with the equal 

contribution of these variations to the sensitivity index. The 

magnitudes of the response deviations indicate whether the value of 

Js, which was used to set the tolerances, was chosen too large or too 

small. 
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Figure 3.10 Off-nominal responses of f i r s t  a r d e r  system 



3.11 Summary 

The problem of designing a linear control system, which is sub-~ect 

to variations or uncertainties of some of its parameters, has been 

formulated as a constrained stochastic control problem. The 

configuration of the system is determined a priori by the designer with 

some free design parameters which can be chosen so as to optimize the 

system performance. Minimization of a quadratic performance index in 

terms of the transient system state vector is used for this purpose, 

Its value is random, however, due to parameter uncertainties, and =he 

performance index is therefore defined as the expected value af zhe 

quadratic term, which is deterministic. This quantity was shown to 

be a sum of two terms, the first of which is simply the value of the 

performance index for the nominal parameter values. The second term 

depends only on the variations of the system parameters and can be 

used as an index of system sensitivity. 

The necessary conditions for the minimum of this performance 

index could be obtained as straightforward matrix equations only 

because of the convenient form of the equations when the system 

matrix is in the phase-variable form. The problem of computing the 

numerical solution to these equations is left to the following chapter, 

Two specific forms of the performance index ar, considered, i.e. the 

model performance index and the integral square error index. The MPL 

is interpreted in a new way in terms of the error model of the syscern, 

This leads to a new and simpler method for dealing with systems with 

transfer zeros than was available before. 



The integral square error index includes the model response explicitly 

as a function of time which makes it necessary to augment the necessary 

conditions. The effect,is, however, limited to the nominal part of the 

performance index and the sensitivity term is unaffected by the model 

response, An example, applying the ISE index to the design of a first 

order system, shows that using the expected value of this index is very 

useful in reducing the system sensitivity to variations in gain, given 

enough design freedom. 

A. method for including the effects of noise is considered 

wnereby a new term expressing this effect is added to the system 

perforrna.nce index. Finally, the problem of inverse sensitivity is 

discussed and a method developed for estimating the tolerances of 

statisti.cally independent system parameters. 



Chapter 4. Numerical Methods 

4.1 Introduction 

The necessary conditions for a local minimum of the expected 

value of a quadratic performance index were derived in Sectiors 3 , 3  

and 3.4 of the previous chapter. These were found to consist of 

2(n+2) matrix equations plus a single vector equation as shown by 

Equation (3.751, where n is the dimension of the system state, A 

solution of these equations must now be found in terms of the free 

design parameters. An analytic solution was obtained for a simple first 

order problem in Chapter 3, but this is impractical or impossible 

for any higher order problem especially if transfer function zeros are 

involved. It is therefore necessary to develop a numerical technique 

for obtaining the solution. 

A well known method of this type is the gradient or steepest 

descent method, whereby the solution is found by iteratively nloving 

in the negative direction of the local gradient vector in the parameter 

space. More specifically, the procedure consists of satisfying a11 

the constraining equations of (3.75) except the last equation, which 

is a vector equation and becomes the expression for the local gradient 

at the current point in the parameter space as will be shown later, 

Solutions to these constraining equations must be obtained for 

each step of the minimization process, using the current value ~f the 

design parameters. These solutions are then substituted into the 

last equation of Equation (3.75) in order to determine the grad ienr :  

at this point. Thus, it is important that these equations be solved 

in a relatively efficient and accurate way, which is not a simple task 

for systems of high order. A problem of sixth order, for instance, 

requires the solution of 16 such equations with an equal number of 

solution matrices, each of which contains 36 elements. Thus, 576 scalar 



equations must be solved in this case although some of these are 

identicla1 when the solution matrix is symmetric. One method which has 

been used in the past to solve equations of this type defines the 

solution as a steady-state solution of a matrix differential equation. 

For instance: 

This equation is then integrated by some numerical procedure, such 

as the Runge-Kutta method, until a steady-state condition is reached, 

assuming that the system equations are stable. The initial condition 

for - X is arbitrarily chosen, for instance, equal to the zero matrix. 

This method is equivalent to solving for the time response of 

the system, which may require a great number of time steps before 

steady-state is reached. It has been found to be inefficient as well 

as inaccurate if the integration time step is not carefully selected, 

but has been used successfully in the solution of the deterministic 

design problem. In this case it is only necessary to solve two such 

matrix equations, whereas an additional 2(n+l) equations must be 

solved in order to determine the value and the gradient of the expected 

value of the performance index. 

In following a suggestion by Professor Potter that the solution 

to Equation (4.1) could be simplified by writing the solution - 3  a 

product of two matrices it was discovered that an explicit solution of 

Equation (4.1) can be obtained when the system matrix is in the phase- 

variable form. This solution leads to a very efficient method for 

determining the minimum of the performance index defined by Equation 

(3-131 , 



4.2 S o l u t i o n  of  Matr ix  Equations 

I t  was found i n  Sec t ion  3 . 3  of t h e  previous  chap te r  t h a t  the  

mat r ix  equa t ion  ( 3 . 3 3 )  assumes a  very  convenient  form when t h e  system 

mat r ix  i s  i n  t h e  phase-var iable  form. This  was seen by w r i t i n g  t h e  

equa t ion  column by column and o b t a i n i n g  an i t e r a t i v e  r e l a t i o n s h i p  for 

any column v e c t o r  of t h e  s o l u t i o n  mat r ix  i n  t e r m s  of t h e  a d j a c e n t  

column v e c t o r  on i t s  l e f t  hand s i d e .   his s i m p l i c i t y  of  form i s  a basic 

proper ty  of  a l l  t h e  c o n s t r a i n i n g  mat r ix  equa t ions  of Equation (3,753, 

and it can be used t o  develop a  method f o r  t h e i r  s o l u t i o n .  These 

equa t ions  a r e  b a s i c a l l y  of f o u r  types  a l though t h e r e  i s  a  g r e a t  anc3n-k 

of s i m i l a r i t y  between them. The s o l u t i o n  f o r  each type  w i l l  be developed 

s e p a r a t e l y .  

Th i s  equa t ion  inc ludes  two system m a t r i c e s :  A ,  which i s  an c x n  - 
h A 

system mat r ix ,  and A, which i s  an RxR system mat r ix .  Both A and A are - - - 
A 

assumed t o  be  i n  t h e  phase-var iable  form. A i s  e i t h e r  i d e n t i c a l  t o  A ,  - - 

i n  which case  R=n, o r  it can be  d i f f e r e n t  from A. An example cf t h e  - 

l a t t e r  case  i s  t h e  i n t e g r a l  square  e r r o r  index,  where A i s  t h e  model - 

m a t r i x  and R<n. The unknown m a t r i x ,  X ,  and t h e  cons tan t  ma t r ix  C m u s t  - - - 

then  be nx!L m a t r i c e s .  The q u a n t i t y  X zr can be w r i t t e n  a s :  - - 



s t  where x .  i s  t h e  (ii-1)- column v e c t o r  of  X.  The e f f e c t  of pos tmul t i -  
-1 - 

p ly ing  a g e n e r a l  ma t r ix  by t h e  t r a n s p o s e  of a  system mat r ix  i n  t h e  

phase-var iable  form i s  t o  s h i f t  i t s  columns t o  t h e  l e f t  by one p o s i t i o n .  

The l a s t  column i s  then  rep laced  by a l i n e a r  combination of a l l  t h e  

column v e c t o r s ,  each o f  which i s  m u l t i p l i e d  by t h e  system c o e f f i c i e n t  

of t h e  same o r d e r .  Th i s  p roper ty  i s  u s e f u l  i n  machine computations 

s i n c e  the m u l t i p l i c a t i o n  can be  performed f a s t e r  than i n  t h e  c a s e  of 

two g e n e r a l  m a t r i c e s  of  t h e  same dimension. 

The mat r ix  equa t ion  under c o n s i d e r a t i o n  can now be  w r i t t e n  

column by column us ing  Equation ( 4 . 2 )  : 

s t  
w h e r e  c .  i s  t h e  ( i + l ) -  column v e c t o r  o f  t h e  c o n s t a n t  C ma t r ix .  Thus, 

-1. - 
t h  an iterative r e l a t i o n s h i p  i s  ob ta ined  f o r  t h e  i- column of - X i n  terms 

s t  of the  l i - 1 ) -  column. I n  o r d e r  t o  s t a r t  t h i s  process  it i s  necessary  

t o  compute x A n  express ion  f o r  x can be  ob ta ined  by s u c c e s s i v e l y  
-0 ' 4 

s ~ b s t i t u t i n g  f o r  xl ... x i n  t h e  l a s t  equa t ion  of ( 4 . 3 )  us ing  t h e  
-9,- 1 

f i r s t  R - - 1  i t e r a t i v e  express ions .  Th i s  l e a d s  t o  t h e  fo l lowing equa t ion  

is, x alone:  
-0 



ERXO + + Ek-251 + + -1-R-2 + E C  -0-R-1 = - o 

where Ei i s  a  ma t r ix  polynomial de f ined  by: 

and 

x can now be  computed by i n v e r t i n g  EL: 
-0 

A 

I t  has  been shown, t h a t  EL can be i n v e r t e d  a s  long a s  A - and -A - 

have no common e igenvalues  [131, i . e .  t h e  system has no common poles 

wi th  t h e  a d j o i n t  system equa t ion  de f ined  by: 

A 

I f  A and A a r e  both  system mat r i ces  of s t a b l e  systems a l l  t h e i r  poles - - 

a r e  i n  t h e  l e f t  h a l f  complex p lane .  The a d j o i n t  system represen ted  by 

Equation ( 4 . 7 )  has  a l l  i t s  po les  i n  t h e  r i g h t  h a l f  p lane  i n  t h i s  case, 

s i n c e  t h e  po les  of a  system and i t s  a d j o i n t  form a  m i r r o r  image about 

t h e  imaginary a x i s .  Ell can t h e r e f o r e  be i n v e r t e d  a s  long a s  t h e  eondi- 
A 

t i o n  o f  s t a b i l i t y  i s  s a t i s f i e d .  When A = A, a s  i s  t h e  c a s e  i n  some of - - 
t h e  equa t ions  of (3 .75) ,  t h e  same cond i t ion  holds .  I t  may a l s o  be 

observed t h a t  a t  t h e  p o i n t  of i n s t a b i l i t y ,  i .e .  a s  t h e  po les  c r o s s  t h e  

imaginary a x i s  i n  t h e  complex p lane ,  t h e  system po les  co inc ide  with t h e  

p o l e s  of i t s  a d j o i n t  system and ER i s  no longer  i n v e r t i b l e .  

When x has  been computed us ing  Equation (4 .6 )  t h e  remaining 
-0 



c o l u n  v e c t o r s  of  t h e  x  ma t r ix  a r e  ob ta ined  us ing  t h e  i t e r a t i v e  - 
r e l a t i o n s h i p :  

F i n a l l y ,  a  very u s e f u l  express ion  f o r  computing t h e  E. m a t r i c e s  can 
-1 

be ob ta ined  from Equation ( 4 . 5 )  : 

The s o l u t i o n  t o  t h i s  equa t ion  can be ob ta ined  i n  a  s i m i l a r  way 

t o  the s o l u t i o n  o f  t h e  preceding mat r ix  equa t ion .  The system m a t r i c e s  

are t he  same a s  b e f o r e  and C i s  any c o n s t a n t  nxR matr ix .  The product  - 
A 

terra P A can now be  w r i t t e n  as :  - - 



The e f f e c t  of  pos tmul t ip ly ing  a  g e n e r a l  ma t r ix  by a  system matri-ac ic 

t h e  phase-var iable  form i s  t o  s h i f t  i t s  columns one p o s i t i o n  to t h e  

r i g h t ,  r e p l a c i n g  t h e  f i r s t  column by z e r o s ,  i n  a d d i t i o n  t o  s u b t r e c t i ~ g  
t h  

a  t e r m  of t h e  from ai-lgR-l from t h e  i- column of t h e  new matrxx, 

Th i s  i s  a  u s e f u l  r e l a t i o n s h i p  f o r  machine computations. The rnal;.-ix 

equa t ion  i s  then  w r i t t e n  o u t  column by column a s  b e f o r e ,  which gives: 

t l r  These equa t ions  g i v e  an i t e r a t i v e  r e l a t i o n s h i p  f o r  t h e  i- 

s t  column v e c t o r  of P i n  t e r m s  of t h e  (i.41)- column v e c t o r  a s  w e l l  as  t k e  - 

l a s t  column v e c t o r .  I t  i s  t h e r e f o r e  necessary  t o  s t a r t  by computicg 

t h e  va lue  of  gR-I. Th i s  can be  done by success ive  s u b s t i t u t i o n  f o r  gi 
t h  i n  t h e  i- equa t ion  of ( 4 . 1 1 ) ,  u s ing  t h e  express ion  ob ta ined  f o r  gi 

from t h e  ( i + l )  st equat ion .  S t a r t i n g  wi th  t h e  l a s t  equa t ion ,  which 

g ives  p  i n  terms of  gRm1 t h i s  p rocess  i s  completed when a l l  tne -R- 2 

unknown column v e c t o r s  excep t  p  have been e l imina ted :  4-1 



where gE i s  t h e  same mat r ix  polynomial a s  d e f i n e d  by Equation ( 4 . 5 ) .  

EQ -* 1 i s  then  ob ta ined  by i n v e r t i n g  t h i s  ma t r ix :  

where t h e  i n v e r s e  o f  t h i s  ma t r ix  e x i s t s  s u b j e c t  t o  t h e  c o n d i t i o n s  

outlined i n  t h e  preceding subsec t ion .  The remaining column v e c t o r s  

are then e a s i l y  computed by us ing  t h e  i t e r a t i v e  r e l a t i o n s h i p :  

The t e r m  expressed by t h e  summation i n  Equation ( 4 . 1 3 )  i s  

computed most convenient ly  by us ing  t h e  i t e r a t i v e  equat ion:  

where 

4-2-3 S o l u t i o n  of Zi and f l i  

The equa t ions  f o r  t h e  nxn Z .  ma t r i ces  w e r e  d e r i v e d  i n  S e c t i o n  
-1 

3 , 3  a s :  



I t  i s  c l e a r  t h a t  ZO must be  determined f i r s t  i n  o r d e r  t o  compute  he 

remaining m a t r i c e s  from Equation (3 .40) .  Th i s  can be done by consec~tive 

s u b s t i t u t i o n  i n t o  Equation (3.43) of  t h e  i t e r a t i v e  express ions  f o r  - Z " ,  
h 

s t a r t i n g  w i t h  Znml. The fo l lowing  equa t ion  f o r  Z i s  t h e n  obtained: -0 

where E.  i s  the same mat r ix  polynomial a s  expressed by Equation I4,5) 
-1 

- ai and R = n: wi th  ai - 

and g o =  - I 

E can always b e  i n v e r t e d  when A i s  t h e  system mat r ix  of  a s t a b l e  sysL"..enul, -n - 
The s o l u t i o n  f o r  go t h e n  becomes: 

and t h e  remaining Z .  ma t r i ces  a r e  computed from t h e  i t e r a t i v e  r e l a t ioc -  
-I 

s h i p  : 



T h e  equations f o r  t h e  Lagrangian matr ices  corresponding t o  t h e  

preceding equations f o r  Z. were derived i n  Sect ion 3.4: 
-1 

where th 'e  pin c o e f f i c i e n t s  a r e  members of t h e  l a s t  column of t he  

Lagrangian matr ix  P2, which i s  assumed t o  have a known so lu t i on  a t  

this poin t .  Equation (3.60) i s  an i t e r a t i v e  r e l a t i onsh ip  which makes 

it poss ib le  t o  determine a l l  t h e  A .  matr ices  once An has been computed. 
-1 

The following equation f o r  An i s  determined by successive s u b s t i t u t i o n  

of Equation (3.60) i n t o  Equation (3.58) s t a r t i n g  with i = 2: 

w h e r e  E i s  t h e  same matrix polynomial a s  before  and can the re fo re  be 
--PA 

inverted f o r  a s t a b l e  system t o  give:  

The remaining matr ices  a r e  then r ead i ly  determined, s ince:  



4.3 ~umerical Accuracy 

It has been shown that in order to obtain a numerical sobutlan 

to the matrix equations considered in this section a great number of 

matrix operations must be performed, including a matrix inversion, 

Most of these involve multiplications by the system matrix A, - in some 

instances to n* power. The speed and accuracy of the machine 

computations of these multiplications is enhanced by taking advantage 

of the phase-variable form of this matrix, as indicated in Sections 

4.2.1 and 4.2.2 in the case of postmultiplication of a general m a t r i x  

by A or its transpose. Analogous properties can be demonstrated for - 
premultiplication by A - of a general matrix, in which case the rows 05 

this matrix get operated upon. For instance: 

The effect here is to shift the rows of B up by one position and rep'- - ~ d e e  

the last row by a linear combination of all the rows of B. A simi--ar - 
expression can be given for the premultiplication by the transpose of 

the system matrix. 

However, it has been found that the numerical accuracy of the 

preceding solutions is insufficient for most practical problems ulen 

the computations are performed with an eight decimal accuracy (single 

precision) using the standard Gauss-Jordan method for matrix inversions, 

One possible way of improving the accuracy consists of increasing the 

number of decimals to sixteen (double presision), which doubles zhe 

storage requirements in the computer memory. A more elegant method uses 



an r t e r a t i v e  procedure f o r  r e f i n i n g  t h e  so lu t i on  u n t i l  some des i red  

accuracy has been achieved. This requi res  no add i t i ona l  s t o r age  space 

b u t  may r e s u l t  i n  a longer computation time depending on t h e  number of 

i t e r a t i o n s  performed. This technique w i l l  be described i n  d e t a i l  f o r  

each t y p e  of matrix equation. 

Consider f i r s t  t h e  equation of Sect ion 4.2.1: 

assuming t h a t  an i n i t i a l  so lu t i on  has already been computed, us ing t h e  
.., 

appropria te  equations.  This so lu t i on ,  which i s  denoted by - X ,  i s  then 

s u b s t i t u t e d  i n t o  t h e  o r i g i n a l  equation,  which gives:  

.-" 

where C i s  now t h e  computed r i g h t  hand s i d e  of t h e  equation.  By -1 

subzrac t ing  t h i s  equation from t h e -  o r i g i n a l  one t h e  following r e s u l t  

is obtained: 

where 

and 

Ax - i s  as y e t  unknown, bu t  ASL i s  t h e  d i f f e r ence  between t h e  computed 

and a c t u a l  constant  matr ices  and i s  the re fo re  known. I f  t h i s  d i f f e r ence  

i s  zero it follows from Equation (4.28) t h a t  AX - i s  zero and t h e  computed 
.-" 

solution, X i s  exact .  I n  most ins tances  t h i s  w i l l  no t  be t h e  case  -1 ' 



and Equation (4 .28 )  may be solved i n  order  t o  determine AX. - 

This i s  done by simply replacing the  C - matrix by Ael, A new 

computed so lu t i on  i s  then obtained by adding t h e  computed value of A X ,  - - 
which i s  denoted by AXl, t o  t h e  previously  computed so lu t i on  matrix:  

The process may then be repeated a s  o f t en  a s  required t o  achieve t h e  

des i red  degree of accuracy, assuming t h a t  convergence i s  experiencee,  

t h  The i- computed so lu t i on  i s  then given by: 

The computed C - matrix i s  s imi l a r ly  obtained by adding t h e  cont r ibu t icn  

of each i t e r a t i o n  t o  t h e  previously computed r i g h t  hand s i d e  of 

Equation (4 .26 )  : 

It should be noted t h a t  once t h e  c o e f f i c i e n t  polynomials gi and 

d have been computed f o r  t h e  f i r s t  so lu t ion ,  it i s  unnecessary t o  - R - 1  

recompqte them f o r  each i t e r a t i o n ,  which i s  a mat ter  of some p r a c t i c a l  

importance. There i s ,  of course,  a trade-off  here  between s to rage  space 

and computator t i m e ,  s i nce  a t o t a l  of n (nxn) matr ices  must be storee 

i n  o rder  t o  avoid recomputing them. I t  should a l s o  be pointed o u t  

..1er* t h a t  no e f f o r t  has been made t o  improve the  accuracy of t h e  invert' 

of t he  E_R matrix,  which i s  an a rea  of p o t e n t i a l  improvement although 

t h e  degree of accuracy of t h i s  operat ion has not  been determined, 

The i t e r a t i o n  procedure, which has j u s t  been descr ibed,  has 

been found t o  have very s a t i s f a c t o r y  performance both with respece ro 



accuracy and r a t e  of  convergence. The accuracy i s  determined by com- 

paring t h e  s p e c i f i e d  c o n s t a n t  ma t r ix ,  C,  w i t h  t h e  corresponding - 
t h  computed mat r ix ,  which is  ob ta ined  from Equation ( 4 . 3 3 )  f o r  t h e  i- 

- 
i t e r a t i o n .  The maximum percentage  e r r o r  of  a l l  t h e  elements of  C .  

-1 

can then  be  used a s  an index of convergence. Typ ica l ly ,  t h e  r a t e  of  

improvement of t h i s  e r r o r  has  been found t o  be  about  a t  l e a s t  twol o r d e r s  

of.rnagnitude p e r  i t e r a t i o n  and o f t e n  more. The maximum permiss ib le  va lue  

of t h i s  e r r o r  has  been a r b i t x . a r i l y  s p e c i f i e d . a s  -one p a r t ' p e r  10 10 

i n  the numerical  examples of t h i s  t h e s i s ,  u s ing  double p r e c i s i o n  i n  

some of t h e  c r i t i c a l  ma t r ix  opera t ions .  

The same b a s i c  method can be used t o  r e f i n e  t h e  s o l u t i o n  of  t h e  

remaining mat r ix  equa t ions  a l though some exp lana t ions  a r e  i n  o r d e r  

regarding t h e  computation of  t h e  equa t ions  f o r  Z .  and Li. Assuming 
-1 

that a f i r s t  s o l u t i o n  has  been computed f o r  a l l  t h e  Z .  m a t r i c e s ,  f o r  
-1 

instance, t h e s e  can be s u b s t i t u t e d  i n t o  Equation ( 3 . 4 3 )  t o  g ive:  

where !I) denotes  t h e  f i r s t  computed va lue  of gi and X il is  t h e  
-1 - 

co~nputed va lue  of  - X W. - S u b t r a c t i n g  t h i s  equa t ion  from t h e  o r i g i n a l  

equa t ion  then g ives  an equa t ion  f o r  t h e  c o r r e c t i o n :  

where 

and 



The computed s o l u t i o n s ,  i!'! can a l s o  be  s u b s t i t u t e d  i n t o  t h e  iterative 
-1 

r e l a t i o n s h i p  of  Equation (3.40) t o  g ive:  

The q u e s t i o n  may be  r a i s e d  h e r e  why t h e  r i g h t  hand s i d e  of tk2s 

- (11 equa t ion  i s  e q u a l  t o  ze ro  cons ide r ing  t h e  f a c t  t h a t  t h e  m a t r i c e s  gi 

and i?: a r e  i n e x a c t  s o l u t i o n s  i n  genera l .  The answer t o  t h i s  question 

i s  t h a t  Equation (4.38) i s  c o r r e c t  w i t h i n  t h e  l i m i t a t i o n  imposed by 

round-off e r r o r s ,  s i n c e  was ob ta ined  by computing t h e  r i g h t  hari; 
-1 

s i d e  of  t h e  fo l lowing  equat ion:  

A s  a  consequence it i s  n o t  necessary  t o  a c t u a l l y  s u b s t i t u t e  t h e  so iv . t ians  

i n t o  Equation (4 .38) ,  b u t  it can be  s u b t r a c t e d  from t h e  o r i g i n a l  

(1) equa t ion  t o  y i e l d  an i t e r a t i v e  equa t ion  f o r  A Z .  : 
-1 

(1) (1) = 0 n z .  + f i ~ g ~ - ~  - O<i<n-1 
-1 - 

The s o l u t i o n s  t o  Equations (4,35) and (4.40) can then  be  computc:Z arLd 

added t o  t h e  p rev ious  s o l u t i o n :  

Th i s  p rocess  i s  then repea ted  u n t i l  t h e  d e s i r e d  accuracy i s  

achieved.  I t  i s  i n t e r e s t i n g  t h a t  t h e  n  computed mat r ix  so lu t i a r l s  o r ~ . ~ y  

have t o  be  s u b s t i t u t e d  i n t o  one of t h e  n  ma t r ix  equa t ions  i n  order t o  

pe rmi t  t h e  computation of t h e  c o r r e c t i o n s .  Equations (3.58) ancl (3,601 

f o r  hi have a  s i m i l a r  p roper ty ,  whereby t h e  accuracy of  t h e  solutions 



can be determined by s u b s t i t u t i o n  i n t o  t he  f i r s t  of t he se  equations.  

Fo r  ins tance:  

- 
where i s  t h e  f i r s t  computed value of Ai and i s  t h e  r e s u l t i n g  

-1. 

right hand s ide .  Subs t i t u t i on  of t h e  so lu t i on  matr ices  i n t o  t h e  

i t e r a t i v e  equations (3.60) gives  no add i t i ona l  information about t he  

numerical accuracy of t he  so lu t i on ,  s i nce  these  equations a r e  always 

s a t l s f i e :d  within  t h e  round-off e r r o r  l im i t a t i ons .  The f a c t  t h a t  only 
.., - 
A and !. a r e  needed f o r  t h e  accuracy t e s t  has some p r a c t i c a l  implica- -1 -n 

t i o n s  with respec t  t o  s to rage  requirements, s i nce  it i s  no t  necessary - 
t o  store t h e  intermediate  so lu t i ons  f o r  lIi as  w i l l  be seen l a t e r .  The 

equations f o r  t he  cor rec t ions  t o  h!') a r e  obtained i n  a  way analogous 
-1 

t o  -she dlevelopment of Equation ( 4 . 4 0 )  . 
This method f o r  r e f i n i n g  t h e  so lu t i ons  f o r  Z .  and A. has been 

-1 -1 

found t o  have accuracy and r a t e  of convergence which i s  very s imi l a r  

t o  t h a t  described above f o r  Equation (4 .26) .  Computer programs f o r  

performing the  numerical so lu t i ons  of these  equations a r e  presented i n  

Appendix C of t h i s  document. 

4-4 Computation of t he  Gradient -- 

I t  was mentioned i n  t h e  in t roduc t ion  of t h i s  chapter  t h a t  t h e  

gradient of t he  expected value of t he  quadra t ic  performance index is  

expressed by the  l a s t  equation of Equation (3.75) when a l l  t h e  remaining 

equations of t he  necessary condi t ions  a r e  s a t i s f i e d .  Thus, t h e  grad ien t  

i s  gi-ven by: 



where the elements of the e and f vectors are defined by: - - 

and 

This can be verified by considering the first order variation of J wicL?  -- 

respect to p, which is expressed by Equation (3.74) when all other - - 
terms of 6 5  are set equal to zero. 

The gradient expression given by Equation (4.43) must be evalu- 

ated at any specified point in the free design parameter space irs o r d e r  

to determine the direction in this space, which leads to a smaller 

value of the performance index. (It should be noted that the variable 

parameters all assume their nominal values although the notation 



i nd i ca t i ng  t h i s  has been dropped f o r  s imp l i f i ca t i on . )  For t h i s  purpose 

it is necessary t o  compute t h e  so lu t i ons  t o  t h e  cons t ra in ing  equat ions ,  

which must be s a t i s f i e d  f o r  t h e  cu r r en t  values of t he  f r e e  design 

parameters, These a r e  r ewr i t t en  here  f o r  completeness: 

where U i s  t he  func t ion  of the  t r a c e s  of t he  zi matr ices  a s  given by - 

Equation (3.461 and p is  a  component of t h e  l a s t  column of t he  P2 i n  

matrix, The equations have been rearranged such t h a t  a l l  t h e  matr ices  

on m e i s  r i g h t  hand s i d e s  a r e  known funct ions  of t h e  design parameters, 

p, w h i c h  were def ined i n  Sect ions  3.2 and 3 . 3 .  These matr ices  a s  wel l  - 

as the c o e f f i c i e n t s  of t h e  equations must a l l  be computed f o r  t h e  

cu r r en t  value of p  before  t he  so lu t i ons  can be obtained.  - 
Thl-s t a sk  i s  r e l a t i v e l y  s t ra igh t forward ,  given t h e  d e f i n i t i o n  

05 abi t he  terms, bu t  not  neces sa r i l y  simple,  s ince  it requi res  t h e  

computation of a l l  t he  c o e f f i c i e n t s  of t h e  closed-loop t r a n s f e r  



func t ion  and system i n i t i a l  cond i t ions  a s  w e l l  a s  t h e  d e r i v a t i v e s  o f  

t h e s e  t e r m s  wi th  r e s p e c t  t o  t h e  f r e e  des ign parameters ,  - p,  and t h e  

v a r i a b l e  parameters,  - 5. These d e r i v a t i v e s  a r e  a l s o  requ i red  for t he  

computation of t h e  g r a d i e n t  and a  numerical  method f o r  determining 

them i s  desc r ibed  i n  Appendix B. I t  i s  of course  p o s s i b l e  t o  determine 

a n a l y t i c a l  express ions  f o r  t h e s e  d e r i v a t i v e s ,  b u t  i n  a l l  b u t  t h e  

s i m p l e s t  problems t h i s  would be a  t ed ious  t a s k  o r  t h e  form, i n  which 

t h e  des ign parameters e n t e r  i n t o  t h e  system equa t ions ,  would have t o  

be r e s t r i c t e d .  By computing numerical  approximations t o  t h e  deri.vatives 

t h e  method used t o  f i n d  t h e  closed-loop system c o e f f i c i e n t s  i s  unim- 

p o r t a n t  and t h e  des ign parameters may be e n t e r e d  i n t o  t h e  system 

equat ions  i n  any d e s i r a b l e  way. 

The fo l lowing t a b l e  r e f e r e n c e s  t h e  equat ions  d e f i n i n g  some 

of t h e  terms which must be computed be fore  a  s o l u t i o n  t o  t h e  gradient 

express ion  can be obta ined.  

Table 4.1 References of d e f i n i t i o n s  

t e r m  

X 
-0 

5 0  

- 
"0 

v - 
W - 

'Xi 

aEj 

equa t ion  

(3.11) 

(3.27) 

(3.35) 

(3.42) 

(3.441 

(3.69) 



The rema.ining de r iva t i ve  terms a r e  self-explanatory.  

O n l x  a l l  t h e  c o e f f i c i e n t s  and constants  have been determined, 
- 

t h e  equations f o r  X,  - g2, Zi, hi, b X ,  - and El a r e  solved using the  

techniques of Sect ion 4.2, which were found t o  be p a r t i c u l a r l y  

su icab le  f o r  machine computations. The equations must be solved i n  

t h e  same order  as  they appear i n  Equation (3 .46) ,  s i nce  only t h e  f i r s t  

t w o  of these  a r e  independent of t h e  remaining equations each of which 

depends on t he  so lu t i on  of an equation above it. The so lu t i ons  a r e  

then s u b s t i t u t e d  i n t o  Equation (4.43) i n  order  t o  determine t he  

valus of t he  grad ien t .  The value of the  performance index i s  a l s o  

e a s i l y  obtained by using Equation (3 .24) ,  which expresses 7 as :  

The grad ien t  expression f o r  t he  i n t e g r a l  square e r r o r  performance 

index co~ata ins  two terms, represen t ing  t he  e x p l i c i t  e f f e c t  of t h e  

model, i n  add i t ion  t o  t h e  q u a n t i t i e s  of Equation (4 .43) .  These 

terxs axe obtained from Equation (3.121) and t h e  grad ien t  of t h e  

ISE i n d e x  can be w r i t t e n  as: 

A 

where QPL r e f e r s  t o  t h e  quadra t ic  performance index. Y and P3 a r e  - 

the solu-Lions of t h e  cons t ra in ing  equations (3.118) and (3.120) which 

m u s t  be solved i n  addi t ion  t o  t he  equations (4 .46) .  The value of t h e  

ISE  index i s  evaluated by the  following equation: 



P. 

where - X is the solution of Equation (3.117), which is not a funztren 

of the system design parameters and needs only be solved once for any 

specified model. All these equations are of the type discussed rn 

Section 4.2. 

A few remarks of practical interest can be made about the calcu- 

lation of the gradient expression. Referring back to Equation (4-43: 

it is noted that the first term is postmultiplied by a vector w ~ i a s e  

only non-zero element is the last component. As a consequence, r t  is 

only necessary to compute the last column of the matrix products of 

this term, which reduces the number of computations required. Ie 1 s  

also of considerable practical importance that the A. matrices do  rot 
-1 

have to be stored for all values of i, because of the convenienr way 

in which they enter into the gradient expression. The contriku-,o~ 

of these matrices to the gradient can then be updated iterativei!/ ss 

corrections to the solutions are computed. The savings in storage 

space can be considerable for high order systems, since n3 e l e m e n t i  

are involved. All the Z. matrices must be stored, however, since 
-3. 

these matrices are solved forward, starting with i = 0 ,  whereas ehe A. 
-I 

matrices are solved backwards, which makes it impossible to ccmputc 

the corresponding product terms in Equation (4.43), unless eitk...r --P s 

or Ai are stored for all values of i. 

4.5 Minimization Algorithm 

The gradient expression of Section 4.3 can be used in a namber 

of procedures, which determine the minimum of the corresponding EUEC-" 

tion, 3, with respect to the specified variables, i.e. the free desrgn 

parameters in this case. The simplest of these is the steepest descent 

method whereby the values of these parameters are incremented i-, the 

direcLion of the negative gradient vector in order to achieve a 

reduction in the value of 5. The starting values of the paramezers 



nust be s p e c i f i e d  a s  w e l l  a s  r u l e s  f o r  c o n t r o l l i n g  t h e  magnitude o r  

step s i z e  of t h e  increments i n  t h e  parameter  space.  Th i s  i s  b a s i c a l l y  

t h e  technique ,  which has  been used i n  s o l v i n g  t h e  des ign  examples of 

e n i s  t h e s i s .  Thus, t h e  change i n  t h e  f r e e  des ign  parameters  a t  each 

p o i n t  i s  given by: 

where s i s  t h e  magnitude of t h e  s t e p  s i z e  and g i s  t h e  g r a d i e n t  of 3. - 

This  change i n  p w i l l  always reduce t h e  va lue  of 5, assuming t h a t  g - - 

1s  not t h e  n u l l  v e c t o r  and t h e  s t e p  s i z e  i s  smal l  enough, such t h a t  

t h e  change i n  i s  approximately f i r s t  o rde r .  The s t e p  s i z e  must be 

c o n t r o l l e d  very  c a r e f u l l y  i n  o r d e r  t o  i n s u r e  reasonable  p rogress  

towards t h e  minimum of 5 wi thou t  i n v a l i d a t i n g  t h e  f i r s t  o r d e r  approx- 

 mati ion . 
The p a r a b o l i c  approximation has  been found t o  be  very u s e f u l  

- 
for t h i s  prupose. The change i n  J i s  then approximated t o  second 

o r d e r  i n  t h e  d i r e c t i o n  of t h e  g r a d i e n t  a s :  

where G i s  t h e  second d e r i v a t i v e  of 3 wi th  r e s p e c t  t o  p: - - 

Ey s u b s t i t u t i n g  f o r  6p - from Equation ( 4 . 4 9 )  AT becomes: 

- 
h e  n ~ i n i m u m  va lue  of AJ wi th  r e s p e c t  t o  s can be determined by 

c ~ f f e r e n t i a t i o n  and i s  ob ta ined  when: 



This  va lue  of s determines  t h e  s t e p  s i z e  i n  t h e  d i r e c t i o n  of t h e  

n e g a t i v e  g r a d i e n t  from t h e  c u r r e n t  p o i n t  i n  parameter  space  t o  t h e  

minimum of r a s  expressed by t h e  second o r d e r  approximation,  The 

denominator of Equation (4.53) is ,  however, unknown b u t  can be computed 

a t  any g iven p o i n t  a t  which t h e  va lue  of and i t s  g r a d i e n t  a r ?  k~?oy.rr,, 

i f  t h e  va lue  oE 5 i s  a l s o  known a t  ano the r  p o i n t  a long t h e  c ? i r e z t l r 7  

r h .  S u b s t i t u t i n g  t h e s e  va lues  i n t o  Equation ( 4 . 5 0 )  and rear-ra-,g:cg - 
g i v e s  : 

m 

where Tl and T2 a r e  t h e  va lues  of 3 a t  t h e  two p o i n t s  and s l  i s  the 

d i s t a n c e  between them. Th i s  express ion  must be  p o s i t i v e  i n  o r d e r  far 

AT t o  have a  minimum along t h e  d i r e c t i o n  of h. - 

The s t e p  s i z e  which g i v e s  t h e  d i s t a n c e  from p o i n t  1 t o  the 

minimum va lue  i s  then  ob ta ined  from Equation (4.53) by subs t i tuz inc j  

t h e  computed va lue  of - - -  hT G h a t  t h i s  p o i n t .  B a s i c a l l y  two cond i t lo rLs  

a r e  s p e c i f i e d ,  which cause  a  p a r a b o l i c  s t e p  t o  be taken:  

- t h e  change i n  t h e  performance index i s  p o s i t i v e  and 

t h e  s t e p  s i z e  must be reduced 

-- t h e  s c a l a r  product  of t h e  g r a d i e n t  v e c t o r s  a t  two 

consecut ive  p o i n t s  i n  parameter  space  i s  nega t ive .  

The f i r s t  of t h e s e  needs no exp lana t ion  s i n c e  it i n d i c a t e s  that tne 

minimum of i n  t h e  d i r e c t i o n  of -g - has  been overstepped.  I t  i s  e l e a r ,  



however, t h a t  t h i s  minimum can be passed even though t h e  va lue  of T 

does n o t  i n c r e a s e  a s ,  f o r  i n s t a n c e ,  i n  t h e  w e l l  known r a v i n e  problem 

waere t h e  process  s t e p s  back and f o r t h  ac ross  a  v a l l e y  i n  t h e  func t ion  

space, making very smal l  p rogress  towards t h e  minimum. The second 

cond i t ion  i s  in t roduced i n  o r d e r  t o  a l l e v i a t e  t h i s  problem by t a k i n g  

a g a r a b a l i c  s t e p  when-ver t h e  g r a d i e n t  a t  a  given p o i n t  has  a  nega t ive  

p r o j e c t i o n  on t h e  previous  g r a d i e n t .  This  means t h a t ,  i n  t h r e e -  

d i a e n s i o n a l  parameter  space ,  t h e  p a r a b o l i c  s t e p  i s  used when t h e  

g r a d i e n t  t u r n s  through more than  90'  from one p o i n t  t o  t h e  next .  This  

e f f e c t i v e l y  p reven t s  t h e  s t r a d d l i n g  motion by l o c a t i n g  t h e  minimum 

of a r a v i n e ,  when t h i s  type  of behaviour i s  de tec ted .  

The amount by which t h e  s t e p  s i z e  can be modified by t h e  

pazabo l ic  approximation has  been a r b i t r a r i l y  l i m i t e d ,  such t h a t :  

where s and si a r e  t h e  p a r a b o l i c  and r e g u l a r  g r a d i e n t  s t e p s ,  
P 

r e s p e c t i v e l y .  The s t e p  s i z e  can, t h e r e f o r e ,  be inc reased  a s  w e l l  a s  

decreased,  which i s  of advantage i n  some i n s t a n c e s .  The fo l lowing 

means cf s t e p  s i z e  c o n t r o l  a r e  a l s o  included:  

-- s t e p  s i z e  i s  doubled i f  t h e  d i f f e r e n c e  between t h e  

a c t u a l  and p r e d i c t e d  changes i n  i s  wi th in  

a  s p e c i f i e d  percentage  va lue  

- s t e p  s i z e  i s  halved i f  t h e  computed curva tu re  of 7 

i s  found t o  be nega t ive  when a t t empt ing  a  

p a r a b o l i c  s t e p .  

T h e  f i x s t  of t h e s e  i s  used t o  determine t h e  v a l i d i t y  of t h e  l i n e a r  

approximation. Thus, i f  t h e  s t e p  s i z e  i s  w e l l  w i t h i n  t h e  l i n e a r  



range it i s  l i k e l y  t h a t  more improvement could be  achieved i n  tbe 

va lue  of J i f  a  b i g g e r  s t e p  s i z e  were used. The second condit:..cn 

i n d i c a t e s  a  breakdown of t h e  p a r a b o l i c  approximation and t h e  step 

s i z e  i s  a r b i t r a r i l y  c u t  i n  h a l f  which o f t e n  r e s u l t s  i n  a  more aec~ ra -ke  

va lue  of  t h e  c u r v a t u r e  c a l c u l a t i o n .  The minimizat ion p rocess  :LS 

t e rmina ted  when e i t h e r  of t h e  fo l lowing cond i t ions  a r e  sat isf ie?. :  

- t h e  p a r a b o l i c  s t e p  f a i l s  t o  make p rogress  i n  t h r e e  

consecu t ive  a t t empts  
- - both  t h e  a c t u a l  and p r e d i c t e d  computed improvements i n  2 are 

s m a l l e r  t h a n  a  s p e c i f i e d  v a i a e  

There has  been no a t t empt  t o  opt imize  t h e  r a t e  of convergence here 

b u t  t h e  procedure has  been found t o  be r e l i a b l e  a l though convergence 

i s  r e l a t i v e l y  slow i n  t h e  v i c i n i t y  of t h e  minimum, a s  i s  t h e  czse 

wi th  most s imple  g r a d i e n t  techniques .  





Chapter 5. Application to Flight Control Systems 

5.1 Introduction 

A flight vehicle is typically operated over a wide range of 

flight conditions with associated changes in its dynamic characterist-cs, 

Furthermore, these characteristics are not always accurately knt3.ri.in 

for any given flight condition, especially before the vehicle has 

been flight tested. 

Consequently, a flight control system may often be required 

to achieve some desirable performance despite uncertainties or spec;f:-ed 

changes in the vehicle's dynamics. Thus, the design of flight c o n i r ~ E  

systems is a logical area for the application of any method which tzYes 

such changes and uncertainties into account. Before applying tile 

method of Chapter 3 to specific examples, it is appropriate to deveLT>p 

a general approach to problems of this type. 

5,2 A Sensitivity Design Procedure 

The sensitivity design method of Chapter 3 was developed on 

the basis of first order variations about a nominal time response o? 

the system. Its application is, therefore, likely to be most u s e f c A  

when the trend in the system response, as these parameters are varied. 

can be approximated by first order effects. This does not necessar:, \r 

mean that the changes in the parameters have to be small. It was 

seen in the example of Section 3-10, for instance, that the toezL; 

range of the output response deviations of a first order system dce 

to - +50% changes in static sensitivity was well predicted by a lrnear 

approximation, although the deviations were not symmetric about r h e  

nominal response. The sensitivity index, based on the linear 

deviations of the response, was also found to a useful indicator of 

the effect to these changes on the system response, 



I t  was shown i n  Sect ion 3 . 3  t h a t  t h e  expected value of t h e  

quadra t ic  performance can be separated i n t o  two p a r t s ,  which can be 

written : 

where J, i s  t h e  value of t h e  performance index when a l l  t h e  design 

parameters t ake  on t h e i r  nominal values.  J expresses t h e  e f f e c t s  s 

of unce r t a in t i e s  i n  t he  va r i ab l e  design parameters on 7 and i s  r e f e r r ed  

t o  as an  index of system s e n s i t i v i t y .  

The b a s i c  approach t o  t he  s e n s i t i v i t y  design,  using t h e  method 

developed i n  t h i s  t h e s i s ,  can now be s t a t e d  i n  terms of t h e  following 

s t eps  : 

1) t he  configurat ion of t he  con t ro l  system i s  chosen i n  an 

attempt t o  s a t i s f y  t he  spec i f i ca t i ons  on nominal system 

response 

2) t he  f r e e  design parameters a r e  optimized by determining 

t h e  minimum of t h e  nominal value of a  s u i t a b l e  quadra t ic  

performance index. 

The choice of the  feedback va r i ab l e s  and t h e  required compen- 

sation i s  mainly determined by the  d e s i r e  t o  ob ta in  good nominal 

system performance a t  t h i s  s tage .  I t  i s  reasonable,  however, t o  give 

some considerat ion t o  t he  in f luence  of t he  configurat ion on system 

s e n s i t i v i t y .  Some of t h e  methods reviewed i n  Sect ion 2 .6  may be 

useful f o r  t h i s  purpose. 



The va lue  of t h e  s e n s i t i v i t y  index can be  computed a t  t111.s ponnt 

f o r  each of  t h e  v a r i a b l e  des ign  parameters  i n  o r d e r  t o  i n d i c a t e  t h e  

r e l a t i v e  importance of each v a r i a t i o n  on t h e  system performance, i :  

t h e  des ign  ob ta ined  by t h e s e  s t e p s  m e e t s  a l l  t h e  s p e c i f i c a t i o n s  f o r  

a11 s p e c i f i e d  va lues  of t h e  v a r i a b l e  des ign  parameters ,  t h e r e  rs nc 

need t o  go any f u r t h e r ,  s i n c e  a  s a t i s f a c t o r y  des ign  has been found 

I f ,  on t h e  o t h e r  hand, t h e  des ign  i s  s a t i s f a c t o r y  f o r  nominal values 

of t h e  v a r i a b l e  des ign  parameters ,  b u t  i s  unacceptable  f o r  t h e  expeeteC. 

v a r i a t i o n s  o f  t h e s e  parameters ,  t h e  fo l lowing s t e p  i s  performed: 

3 )  t h e  expected  va lue  of t h e  performance index i s  minimized 

f o r  a  s p e c i f i e d  va lue  of t h e  covar iance  mat r ix  of t h e  

v a r i a b l e  parameters .  

I f  t h e  system i s  s t i l l  t o o  s e n s i t i v e ,  t h e  e f f e c t s  of  t h e  u n c e r e a i a t l e s  

on t h e  expected  va lue  of t h e  performance index can be inc reased  an? 

t h e  minimizat ion repea ted .  This  can be  done by m u l t i p l y i n g  t h e  

covar iance  mat r ix  of t h e  parameter  v a r i a t i o n s  by a  c o n s t a n t  factor, 

which s c a l e s  t h e s e  v a r i a t i o n s  wi thou t  changing t h e i r  r e l a t i v e  

r e l a t i o n s h i p .  The r e s u l t  i s  t h a t  more emphasis i s  placed on r e d d c s r ~ ~  

t h e  s e n s i t i v i t y  index than b e f o r e .  I f  t h e  des ign i s  

s t i l l  n o t  s a t i s f a c t o r y ,  it i s  concluded t h a t  t h e  c o n f i g u r a t i o r  c?asen 

does n o t  have t h e  c a p a b i l i t i e s  t o  m e e t  t h e  system s p e c i f i c a t i a m s  arcler 

t h e  s t a t e d  cond i t ions  of parameter  u n c e r t a i n t y .  A new c o n f i g ~ ~ r a t i a n  

must then  be  chosen and t h e  process  r epea ted .  

5.2.1 Trade-off Parameter ,  p 

For a  f i x e d  c o n f i g u r a t i o n  which has  a  l i m i t e d  number of free 

des ign  parameters ,  t h e  improvement i n  t h e  expected va lue  of t h e  

performance index dur ing  s t e p  number 3 i s  u s u a l l y  ob ta ined  i n  such 3 

way t h a t  t h e  nominal va lue ,  J,, i s  i n c r e a s e d  a s  t h e  s e n s i t i v i t y  inlex, 

Js, i s  decreased.  Th i s  means t h a t  t h e  nominal system performacce, 



as neasured by the nominal index Jd, deteriorates somewhat, which is 

the price that must be paid for lower sensitivity. The sum of the 

changes in J, and Js must be negative, however, as long as the value 

of 3 is reduced. This is so, because: 

Thus, the improvement in the sensitivity index, Js, is always greater 

t h a r  the corresponding deterioriation of the nominal value of the 

performance index. 

The ability of a given system configuration to reduce the 

sensitivity of the nominal design can be judged on the basis of the 

ratlo :. 

which lies in the range 

w h e r e  AS and AJ, represent the effect of minimizing the expected 
S 

va lue  of the performance index as compared with the values of Js and 

J, sorsesponding to the minimum of J,. When the minima of J, and 
- 
d coincide, the value of Js cannot be reduced any further by minimi- 

z a t l o n  of r. Furthermore, the ratio of Equation ( 5 . 3 )  has the limit 

of zero in this case, as can be shown by considering a first order 

change in 5 due to variations of the free design parameters. To first 

order, this change must be zero at the minimum of 3, such that: 



This  can be used t o  show t h a t :  

I f  t h e  va lue  of  5 can be minimized wi thou t  a f f e c t i n g  t h e  rr:iKrslum 

va lue  of J,, it i s  p o s s i b l e  t o  o b t a i n  an improvement i n  sensi-kixcity 

wi thou t  impair ing  t h e  nominal performance of t h e  system a s  expressed 

by J,. I n  t h i s  case ,  p t a k e s  on a va lue  of  u n i t y ,  s i n c e  AJ, = 0, 

This  can only  occur  i f  t h e  minimum va lue  of  J, wi th  r e s p e c t  t o  the 

f r e e  des ign  parameters  i s  n o t  a unique f u n c t i o n  of  t h e s e  parameters ,  

I n  a d d i t i o n ,  t h e  minima of J, and Js would have t o  co inc ide  a t  some 

p o i n t  i n  t h e  parameter  space ,  which i s  an u n l i k e l y  occurence.  

Most des igns  f a l l  somewhere i n  between t h e s e  extremes.  Thus,  

t h e  h igher  t h e  v a l u e  ob ta ined  f o r  p, t h e  more improvement can be 

achieved i n  system s e n s i t i v i t y  f o r  a g iven change i n  t h e  nominal. 

performance. 

I t  should be emphasized t h a t  t h e  f i n a l  des ign  can only  be 

judged on t h e  b a s i s  of  how w e l l  it s a t i s f i e s  t h e  o r i g i n a l  system 

s p e c i f i c a t i o n s .  The minimizat ion of  t h e  performance index,  o r  zts 

expected value ,  i s  only a means t o  t h a t  end b u t  does n o t  guaraxltee 

an accep tab le  des ign  by i t s e l f .  

The va lues  of t h e s e  i n d i c e s  can,  however, be used t o  give an 

e s t i m a t e  of  t h e  r e l a t i v e  m e r i t s  of  d i f f e r e n t  des igns  of  t h e  same 

system. Th i s  is i n d i c a t e d  by t h e  f a c t  t h a t  doubl ing  t h e  d e v i a t i o n  3.f t h e  

system response  has  t h e  e f f e c t  of quadrupl ing  the v a l u e  of the s e n s l t ~ -  

v i t y  index.  The r e l a t i v e  change of t h e  s e n s i t i v i t y  index may, therefore, 

be used t o  e s t i m a t e  t h e  corresponding change i n  t h e  s e n s i t i v i t y  of  zhe 

system response .  



5 - 3  FL.Fuht Control Svstems 

Flight control systems are often separated into two main 

categories of stability augmentation systems and automatic guidance 

systems. 

The stability augmentation systems are used to alter the basic 

dynamics of the vehicle so that it may be controlled by a human 

pilot with relative ease. The specifications for these systems are 

ses by the handling qualities requirements for the various vehicles, 

which may result in a wide range of acceptable designs. These 

requ~relnents are often expressed in terms of the desirable locations 

of the dominant system mode singularities. 

The automatic guidance systems, in addition to providing system 

s t a b r l i t y ,  are required to be compatible with guidance commands, 

when determine the system response specifications. These specifics- 

t l a n s  are often stated in terms of the time response of the system 

to a standard input signal and may put a severe demand on the control 

system, Thus it may be very difficult to meet the requirements for 

a fast and well damped response to these input commands under the 

conditions of uncertainty or changes in the vehicle characteristics. 

Thls task may be made even harder by the existence of lightly damped 

system modes, such as structural bending modes, which may become 

destabilized in the attempt to satisfy the specifications on the domi- 

nax t  modes. 

Variations in the operating environment represents one of the 

most common sources of change in the dynamics of a flight vehicle. 

These cnanges are often very large, and cannot be considered on the 

basis of linear perturbations from a single flight condition. In 

mazy cases it 1s sufficient, however, to consider only a limited 

number of representative flight conditions in order to insure that 



the performance specifications are met throughout the flight envelope, 

Typically, these performance requirements are not the same in e i t l  

flight regimes of the vehicle. It is, therefore, unlikely that a 

single design, with all the free design parameters set constant, will 

be desirable for controlling the vehicle in widely different flight 

conditions, although this approach has been shown to work in some 

cases [191. 

More commonly, some type of adaptation is likely to be used as 

the flight conditions change from one regime to another, Thus, for 

instance, some gains may be varied continuously or in increments as 

a function of specified flight variables, and elements of compensation 

may be engaged or disengaged depending on the operating condition, 

Despite adjustments of this type, it is desirable that the system be 

inherently insensitive to small changes in the flight conditions, 

Closed-loop adaptation, using a reference model or parameter i d e n t i f f -  

cation, would probably be employed only when simpler techniques f alz- 

to produce a satisfactory design. 

The dynamic characteristics of the flight vehicle are usually 

described by linear perturbation equations about the equilibriurri 

flight conditions, which represent the operating environment of tne 

vehicle. The coefficients of these equations, i.e. the stability 

derivatives, must be determined analytically or by experimental tests, 

These tests may be made with representative models of the vehicle 

under simulated conditions or by using the vehicle itself under 

actual conditions, which results in the most reliable information, 

It is often necessary, however, to design and build the flight c o n t r o i  

system before any such operational testing can be performed, since che 

vehicle may be unflyable without the control system. Prohibitive 

costs may also make such testing impractical. Thus, the data on the 

vehicle dynamics which is available to the control system designer 



may contain considerable inaccuracies. 

The characteristics of the bending motion of flight vehicle is 

a l so  of great importance in the control system design, since special 

means of compensation is often required to insure the stability of 

the bending modes. Typically, the mode shapes and natural frequencies 

of the bending motion are not known accurately, since it is difficult 

and often impractical to determine these experimentally. These 

parameters are also likely to be subject to changes when varying flight 

conditions are encountered. Variations in the performance of control 

system components due to normal tolerances is another source of system 

uncertainty. The effects of these variations can be controlled to 

some extent by specifying their permissible range, but it is often 

required that standard off-the-shelf components be used, in which case 

the tolerances are imposed on the design. Common variations of this 

type are changes in static sensitivity, which are usually accounted 

for by specifying a minimum gain margin in order to prevent instability. 

Sinilarly, phase margins have been used to insure stability despite 

changes in the dynamic characteristics of the system components. 
- . 

5-4 Booster Attitude Control System 

The characteristics of the vehicle, which will be considered 

here, were obtained from Reference [ 3 6 1 .  This vehicle is of particular 

inceres t  because of the low damping and natural frequency of the 

structural bending motion, which is sensed by the on-board instruments 

and is fed back through the control system to the engine actuators. 

Only the first bending mode is included in the vehicle dynamics, 

which are described by the following equations of motion: 



where t h e  symbols r e p r e s e n t  t h e s e  q u a n t i t i e s :  

0 = p i t c h  ang le  of t h e  r i g i d  v e h i c l e  ( r a d . )  

i = p i t c h  ang le  measured by a t t i t u d e  gyro ( r a d . )  

h i  = p i t c h  r a t e  measured by r a t e  gyro ( rad . / sec . )  

Oc = commanded p i t c h  ang le  ( r a d . )  

a = angle-of-a t tack  ( r a d , )  

B = engine  gimbal ang le  ( r ad . )  

B c  = commanded gimbal ang le  ( r a d . )  

q = displacement  of bending mode ( m . )  

ub = bending mode frequency ( rad . / sec . )  

Sb = damping r a t i o  of  bending mode 

The p o s i t i v e  d i r e c t i o n  of  t h e s e  ang les  and t h e  bending displace- 

ment a r e  de f ined  i n  F igure  5.1. The r i g i d  body motion i s  desc r ibed  

by t h e  f i r s t  two equa t ions  and c o n t r o l  to rques  a r e  e x e r t e d  by d e f l e c t i c n  

of t h e  t h r u s t  through t h e  gimbal ang le ,  6. The l a s t  express ion  

i n d i c a t e s  t h a t  t h e  commanded gimbal ang le  depends on t h e  comman~Aed 

p i t c h  ang le ,  which i s  supp l i ed  by t h e  guidance system, and t h e  measured 

p i t c h  ang le  and p i t c h  r a t e ,  The form of t h e  r e l a t i o n s h i p  remains rc 

be determined. The bending mode displacement i s  assumed t o  be exc i te5  

only  by t h e  d e f l e c t i o n  of  t h e  t h r u s t  v e c t o r ,  n e g l e c t i n g  t h e  aerodynamic 



Figure  5.1.  Geometry of e l a s t i c  b o o s t e r  



forces  on t he  body. The ac tua to r  dynamics, r e l a t i n g  t h e  commanded 

and a c t u a l  gimbal angles a r e  approximated by a f i r s t  order  l ag ,  B o t h  

p i t c h  angle and p i t c h  r a t e  a r e  measured by gyros located a t  t he  same 

s t a t i o n  i n  t h e  vehicle .  Their  outputs  a r e  given k~y t h e  followiirrg 

expressions:  

and 

where 

Xb = s lope  of t he  bending mode a t  t he  i n s t rumen t , s t a t i on  

(rad./m. 

The values of t he  bending frequency and mode s lope a r e  assumed 

t o  be inaccura te ly  known with a normal d i s t r i b u t i o n  about t h e i r  mear. 

values .  They a r e ,  furthermore, taken t o  be uncorrela ted with the 

following s t a t i s t i c s :  

The s tandard dev ia t ion  of these  parameters i s ,  t he re fo re ,  5% and PO%, 

respec t ive ly .  



The nominal response  of t h e  system t o  commanded changes i n  t h e  

p i t c h  ang le  should be  a s  f a s t  a s  can be  p r a c t i c a l l y  achieved w i t h  an 

overshoot  of  no more than  20%. The response  should fur thermore  remain 

stable f o r  a t  l e a s t  two s t andard  d e v i a t i o n s  of each of t h e  s t r u c t u r a l  

parameters  w h i l e  t h e  o t h e r  i s  h e l d  c o n s t a n t  a t  i t s  mean value .  

The t r a n s f e r  f u n c t i o n  r e l a t i n g  t h e  r i g i d  body p i t c h  ang le  t o  

the gimbal ang le  can be  determined from t h e  equa t ions  o f  motion as :  

S ince  only t h e  s h o r t  p e r i o d  dynamics a r e  of  i n t e r e s t  h e r e  t h e  p o l e  

and zero c l o s e  t o  t h e  o r i g i n  may be c a n c e l l e d  assuming t h a t  t h e  - 

stability of t h e  c a n c e l l e d  mode w i l l  be cons idered  s e p a r a t e l y .  This  

g ives  : 

T h e  t r a n s f e r  f u n c t i o n  of t h e  bending mode displacement i s  ob ta ined  

f r o m  Equation ( 5 . 6 )  as:  

rr 7 ine time c o n s t a n t  of t h e  gimbal a c t u a t o r  i s  very  smal l  and has  a 

r e g l i g i b l e  e f f e c t  on t h e  system response.  The gimbal ang le  is ,  

therefore, assumed t o  be equa l  t o  t h e  commanded gimbal angle :  



The t r a n s f e r  f u n c t i o n s  of  t h e  r i g i d  v e h i c l e  and t h e  bending 

motion can now be  added i n  o r d e r  t o  g i v e  a  s i n g l e  p i t c h  ang le  transfer 

f u n c t i o n  f o r  t h e  f l e x i b l e  v e h i c l e .  With minor approximations t h i s  

t r a n s f e r  can be  expressed as :  

This  t r a n s f e r  f u n c t i o n  g i v e s  t h e  r e l a t i o n s h i p  between t h e  p i t c h  angLc 

sensed by t h e  a t t i t u d e  gyro and t h e  gimbal d e f l e c t i o n .  The block 

diagram of t h e  a t t i t u d e  c o n t r o l  system i s  shown i n  Figure  5 - 2 ,  where  

p i t c h  r a t e  i s  f e d  back, i n  a d d i t i o n  t o  t h e  a t t i t u d e ' f e e d b a c k ,  i n  order 

t o  s t a b i l i z e  t h e  r i g i d  body mode. The root - locus  of  t h i s  system 

wi thou t  any compensation i n  t h e  forward p a t h  i s  p l o t t e d  i n  Figure  1,3 

f o r  t h e  nominal va lues  of  wb and X b  w i t h  t h e  g a i n  of  t h e  p i t c h  r a t e  

feedback equa l  t o  u n i t y .  

I f  no compensation i s  inc luded i n  t h e  system it i s  c l e a r  t h a c  

t h e  bending mode i s  u n s t a b l e  f o r  a l l  p r a c t i c a l  loop ga ins .  A second 

o r d e r  f i l t e r  can be  used t o  improve t h e  bending mode behaviour by 

g i v i n g  t h e  proper  amount of phase - sh i f t  a t  t h e  bending f requency,  T h e  

t r a n s f e r  f u n c t i o n  of t h i s  f i l t e r  is :  

where t h e  damping r a t i o  has been chosen, b u t  i t s  n a t u r a l  frequency,  h,, 
A 

w i l l  be optimized by t h e  des ign  procedure.  The root - locus  of  t h e  

system w i t h  t h e  bending f i l t e r  inc luded i s  a l s o  shown i n  Figure 5-2 

f o r  a  s i n g l e  va lue  of w f .  I t  i s  seen t h a t  cons ide rab le  improvement 

can be  achieved i n  t h e  damping r a t i o  of t h e  bending mode by u s i n g  

t h i s  compensation. 







In a d d i t i o n  t o  t h e  n a t u r a l  frequency of  t h e  bending f i l t e r  

t w o  o th>er  f r e e  des ign  parameters  a r e  s p e c i f i e d .  These a r e  t h e  s t a t i c  

s e n s i t i v i t y  of  t h e  compensation and t h e  amount of p i t c h  r a t e  feedback, 

denoted by pl and p2 r e s p e c t i v e l y .  

I n  o r d e r  t o  apply  t h e  model performance index t o  t h i s  problem 

it is necessary  t o  s e l e c t  t h e  t r a n s f e r  f u n c t i o n  of  a r e f e r e n c e  model, 

whose c h a r a c t e r i s t i c  c o e f f i c i e n t s  a r e  then used t o  compute t h e  weight ing  

marr ix  of t h e  system s t a t e s .  This  model r e p r e s e n t s  t h e  d e s i r e d  response  

c h a r a c t e r i s t i c s  of t h e  t o t a l  system t o  a commanded change i n  t h e  p i t c h  

angle, The t r a n s f e r  f u n c t i o n  chosen f o r  t h i s  purpose i s  of  f o u r t h  

order and i s  given by: 

A 

whare B i  i s  t h e  p i t c h  ang le  response  of t h e  model a s  it would be  

rnessured a t  t h e  gyro s t a t i o n .  The f i r s t  of t h e  two second o r d e r  modes 

of the  model corresponds t o  t h e  d e s i r e d  r i g i d  v e h i c l e  mode and has  been 

chosen t o  be  w e l l  damped w i t h  a n a t u r a l  frequency of 1 rad. / sec .  The 

roo t - locus  of F igure  5.3 i n d i c a t e s  t h a t  t h e  closed-loop po les  of  t h e  

venicle can achieve  t h i s  damping r a t i o  and n a t u r a l  frequency. The 

system t r a n s f e r  f u n c t i o n  i s  non-minimum phase,  however, and cannot  

be expected t o  xespond a s  f a s t  a s  t h e  model, s i n c e  t h e  ze ro  i n  t h e  

r i g h t  h a l f  complex p lane  has  a t i m e  de lay ing  e f f e c t  on t h e  response.  

The second mode of t h e  model t r a n s f e r  f u n c t i o n  r e p r e s e n t s  t h e  

desired bending mode c h a r a c t e r i s t i c s .  A r a t h e r  moderate va lue  has  

been chosen f o r  t h e  damping r a t i o  i n  o r d e r  t o  p reven t  undue emphasis 

on s t a b i l i z i n g  t h e  bending mode. The n a t u r a l  frequency was chosen 

somewhat lower than t h e  n a t u r a l  bending frequency,  recogniz ing t h e  



fact that the corresponding closed-loop system mode has a tendency 

towards lower frequencies, as can be seen from the root-locus of 

Figure 5.3. 

From Figure 5.2 it can be determined that the system closed- 

loop transfer function has six poles and two zeros. Since the inodei 

is fourth order and contains no zeros, both system and model have %he 

same number of excess poles over zeros, which results in a constant 

weighting matrix according to the development of Section 3 . 5 .  The 

form of the weighting matrix is given by Equation (3.86): 

where ti is an n-dimensional vector containing the coefficients of tke - 

model's characteristic equation, which in this case becomes: 

The performance index, which is to be minimized, is then written as: 

where the system state and its deviation are described by Equations 

(3.5) and (3.151, respectively. Only the roots and static sensitivities 

of the open-loop transfer functions have to be provided to the computer 

programs of Appendix C, which then compute the required closed-loop 

coefficients. 



~t i s  convenient  t o  use  a weight ing  c o n s t a n t ,  s 2 ,  t o  change 

t h e  emphasis on t h e  s e n s i t i v i t y  index r e l a t i v e  t o  t h e  nominal p a r t  

of t he  performance index.  Thus, when E=1 ,  r e p r e s e n t s  t h e  expected 

value of t h e  model performance index f o r  t h e  s p e c i f i e d  parameter  

covaria:nce mat r ix ,  which determines  t h e  magnitude of  t h e  second i n t e g r a l  

of 5, s e t t i n g  € = 2 ,  f o r  i n s t a n c e ,  i s  completely e q u i v a l e n t  t o  mul t ip ly ing  

the parameter  covar iance  mat r ix  by t h e  square  of E, a s  can be  shown 

by using t h e  l i n e a r  r e l a t i o n s h i p  between 6x - and t h e  parameter  v a r i a t i o n s ,  

6 5 ,  Tne e f f e c t  of t h e  parameter  u n c e r t a i n t i e s  on t h e  performance 

index can, t h e r e f o r e ,  be  changed through t h e  va lue  of  E wi thou t  

d i s t u r b i n g  t h e  i n t e r r e l a t i o n s h i p  between t h e i r  v a r i a t i o n s .  

Tha performance index may then  be w r i t t e n  as :  

and t h e  t rade-off  parameter ,  p, becomes: 

5,4.1 S e n s i t i v i t y  t o  Bending Frequency V a r i a t i o n s  

The des ign  method i s  f i r s t  a p p l i e d  t o  t h e  problem cons ide r ing  

on ly  t h e  e f f e c t s  of u n c e r t a i n t i e s  i n  t h e  bending mode frequency.  Thus: 

The computer programs i n  Appendix C w e r e  used t o  minimize t h e  performance 

index of Equation (5.13), s t a r t i n g  wi th  t h e  weight ing  f a c t o r  E=O, which 

results i n  t h e  model performance index des ign  based on t h e  nominal 



value of wb. Next the weighting factor was increased somewhat 

arbitrarily to &=6, which leads to the minimum expected value of t r ~ e  

model performance index for six times the specified variance o f  w k a  

The corresponding values of the free design parameters are g i v e n  in 

Table 5 -1. 

It can be seen from this table that the effect of including 

the sensitivity index in the performance index is to d.ecrease the 

static sensitivity, increase the rate feedback, and decrease the 

natural frequency of the bending filter, when compared with the 

solution based on the nominal value. These changes are all relatively 

small, but it is interesting to compare the values of the nominal 

performance index and the sensitivity index for these design so2..utions, 

design number 

Table 5.1 Values of free design parameters and 

performance indices, with uncertainties 

in w 
b 



These values are listed in Table 5.1, which also gives the values of 

for the two designs with non-zero weighting of the sensitivity index. 

Design no. 1 represents the results of minimizing J, without 

any regard for sensitivity. Comparing the values of the performance 

indices for this design with those of design no. 2, it is clear that 

the minimization of 3 ( & = 6 )  has the effect of reducing the value of Js 

by an order of magnitude, at the spme time as the value of J,, 

representing the nominal system performance, is increased by a much 

smaller amount. 

1t was suggested in Section 5.3 that the ratio denoted by y 

and defined in terms of the changes in J, and Js, can be used as an 

index of the systems1 ability to reduce its sensitivity to a specified 

paraaeter variation, using the sensitivity of the nominal design as 

a reference. For design no. 2, this ratio is 0.8'iysince 0<y<1 - - with 

the lower limit indicating no possible improvement in the sensitivity 

index ( or 3), this system may be rated as responsive to reduction in 

sensitivity to the parameter under consideration. 

The sensitivity of the system as measured by Js can be reduced 

even further by increasing the weighting coefficient of the sensitivity 

term, The results for ~ = 1 2  are given in Table 5.1 as design no. 3. 

The effect on the free design parameters is the same as before with 

further decrease of the static sensitivity, a slight increase in rate 

feedback and reduction of the filter frequency. The reduction in Js 

from 0,0071to 0.0039 in going from design no. 2 to design no. 3 is 

considerable, although nowhere as significant as obtained by design 



no. 2. The price that must be paid in terms of a deteriorating 

nominal performance has also become higher per unit improvement in 

Js as indicated by the change in J, when compared for designs no, 2 

and no. 3. This fact is also reflected in the value of p for desi~n 

no. 3, which has decreased somewhat due to the effect of diminishixg 

returns. 

These relative changes in the performance indices must, however, 

be interpreted in terms of the time responses of the corresponding 

system designs in order to be meaningful. The normalized response of 

design no. 1 to a step input in commanded pitch angle is shown in 

Figure 5.4. The pitch angle response of the system is similar to 

the model's response except for the time delaying effect of the nolT-~ 

minimum phase characteristics. The overshoot is 17% which is within 

the 20% limit and the settling time to within 5% of the steady-sta-e 

output is 11.8 sec. The same time delaying effect is noted in the 

pitch rate response, which is similar to the modelk response in o t h e r  

respects. The sensitivity functions corresponding to pitch a n g l e  a n d  

pitch rate is also shown in Figure 5.4. These indicate a strong 

tendency towards an oscillatory response with changes in the bending 

frequency, wb. The root-locus in Figure 5.5 shows that the ~"crutz~ral 

mode has been well damped but the mode corresponding to the bending 

filter has a damping ratio of only 0.15. The period of the sensitrv~fy 

functions indicate that this mode may be adversely affected by charges 

in the structural frequency. 

The effect of decreasing wb by 10% from its nominal value rs 

given by Figure 5.6 which shows that the system response is unstable 
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Figure 5.4. Step response of design no. 1 (continued) 
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Figure  5 . 4 .  S tep  response,  des ign  no. 1 





Pitch response at gyro station 

Figure 5.6. Off-nominal response, design no. 1. 



for this value of the bending frequency. A 15% reduction in wb is 

seen to result in a fast divergence of the response. Design no. 1 is, 

tkerefo.re, unacceptable, since it does not satisfy the requirements 

on stability when w changes by two standard deviations. The case b 

of increasing w causes no difficulties as could be expected from the b 

fact that the poles of the bending mode move further away from the 

bending filter poles. 

The response for design no. 2 is shown in Figure 5.7. The 

pitch response has slightly less overshoot than design no. 1, but its 

settling time is somewhat longer or about 13.0 sec. This is reflected 

i n  the pitch rate whose peak is reduced when compared with design no. 

1, The really significant effect is noted in the sensitivity responses 

whrch have much smaller amplitudes than before and increased damping. 

The root-locus plot in Figure 5.8 also indicates that the damping 

ratio of the bending filter mode has been increased to 0.27 with a 

slight decrease in the damping of the bending mode. The importance 

of these differences in designs no. 1 and no. 2 are shown by the off- 

nocinal responses in Figure 5.9. For a 10% decrease in wb, the 

response of design no. 2 is clearly stable and, furthermore, the 

pitch angle response still satisfies the specifications of less than 

2 0 6  overshoot. A 15% reduction of wb puts this design on the verge 

of instability, but the residue of the unstable mode is significantly 

less in this case than for design no. 1, which means that the approach 

of instability will be much less severe for design no. 2. 

Thus, design no. 2 satisfies the requirement of a stable response 

for a 113% deviation of wb with a comfortable margin and a relatively 

smooth response. The pitch response of design no. 3 is shown in 

Figure 5.10. The increased emphasis on the sensitivity of this 

design is seen to further reduce the amplitude of the sensitivity 

responsie which is obtained at the expense of an increase in the 



20 t-sec 

Pitch rate response at gyro station 

2 

doi 1 

dwb/wb 0 

20 t-sec 
- 1 

- 2 
Sensitivity of pitch rate response w.r.t, w b 
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Figure 5.10. Step response of design no. 3 .  
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F igure  5.11. Off-nominal responses  of  des ign  no. 3 



settling time to 15.6 sec. as compared with 13.0 sec. for design no, 2 ,  

The off-nominal responses of this design are shown in Figure 5,12 fsr 

decreasing bending frequency. For a 10% decrease, the response is 

somewhat better damped than the corresponding response for design nee 2 ,  

A 20% variation in wb is now required in order to drive the system 

unstable. Design no. 3, therefore, meets the requirements on stability 

with a wider margin than design no. 2. 

5.4.2 Sensitivity to wb and Ab 

Addition of the slope of the bending mode as an uncertain 

parameter to the design process is easily accomplished using the 

present method. The vector of variable parameters becomes: 

with a nominal value: 

and the covariance matrix: 

sincr the uncertainties of wb an3 Ab are uncorrelated. Using a 

weighting factor of ~ = 6  as before, the performance index was 

minimized for this value of the covariance matrix. The solution is 

referred to as design no. 4 whose parameter and index values are 

listed in Table 5.2. 



Table  5.2 Values of free design parameters and performance 

indices with uncertainties in both ob and Xb 

3y comparison of the free design parameters for design no. 4 with those 

of design no. 2, it is seen that these two designs can be assumed to be 

identical for all practical purposes. The effect of the uncertainty 

in A on the sensitivity index may be determined for designs no. 1 and 
ic: 

2 as the difference between the values of Js in Tables 5.1 and 5.2 

for each design. This is so because of the independence of the two 

sources of uncertainty which means that Js can be written: 

where the contribution of each variable is obtained by setting the 

other variable equal to its nominal value. Thus, for design no. 1 the 

contribution of the uncertainties in h to Js is given by: b 



Similarly for design no. 2: 

Thus, it is clear that the system is less sensitive to changes in tne 

slope of the bending mode than to changes in the bending frequency, as 

indicated by the contributions of these two parameters to the sensiti- 

vity index. The improvement in the sensitivity of the system Lo 

uncertainties in Ab is, therefore, much less spectacular than t h e  

reduction in sensitivity to uncertainties in the bending freque!ncy, 

The sensitivity functions of the pitch angle responses o f  these 

two designs with respect to X are given in Figure 5.12. The 
b 

amplitude of this sensitivity function for design no. 1 is much sma:ier 

than the amplitude of the sensitivity function with respect to wb as 

may be seen by comparison with Figure 5.4. A given percentage variztiar 

of wb may be estimated to result in almost-four times As large a 

deviation of the output as the same percentage variation of Xb. T h ~ s  

difference in sensitivkty to LOb and Ab is considerably less for 

design no. 2. 

Comparison of the two sensitivity functions in Figure 5-12 

indicates a significant reduction in sensitivity to Ab in going fron 

design no. 1 to design no. 2. This is also verified by the off- 

nominal responses for these designs, which are shown in Figure 5-13 

for a 20% increase in X from its nominal value. Design no. I b 

exhibits a very lightly damped mode, which may be identified as 

corresponding to the bending filter. The response, furthermore, has 

a 30% overshoot. Design no. 2 on the other hand has a relatively 

well damped response with an overshoot of only 11%. This design, 

therefore, is seen to meet all the specifications on the system 

despite the specified variations of the bending frequency and bending 

mode sbope. 
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5.5 Aarcraft Attitude Control System 

The longitudinal dynamics of a high performance aircraft are 

described in Reference E441 in a very convenient form for application 

of the  present design method. In particular, the uncertainties in 

the vel:icle8s dynamic characteristics are described by the joint 

drscrib~tion of the dimensional coefficients of the equations of 

-?Lot;oa at each flight condition. The vehicle possesses two lightly 

davped bending modes which must be stabilized but whose frequencies 

are inaccurately known. The design of an attitude control system for 

thls vehicle will be considered here for a single flight condit~on. 

"he Longitudinal short period rigid body dymanics of the aircraft 

are described by the following set of linearized differential equations: 

w h e r e  

a = angle-of-attack (rad.) 

0 = pitch angle (rad.) 

@ ,  = measured pitch angle (rad.) 
:1. 

Se = elevator deflection angle (rad.) 

6 = commanded elevator deflection (rad.) 
ec 



Z , Ma, M; and M are the dimensional coefficients which are known 
' a '  6e ' e 
in terms of a joint normal distribution 

where the vector 5 consists of the five coefficients: - 

R - is the covariance matrix of - 5, given by: 

The mean values of the dimensional coefficients are given as 

functions of Mach number and dynamic pressure. The covariance matrix 

R ,  is given by Table 5.3 in terms of the mean values of the dimensi~nal - 

coefficients. 

The structural response dynamics are described by the equazloss 

of the first two bending modes: 

where q1 and n2 are the deflections of the first and second b e n d k g  

modes at a specific reference station. The elevator input coefficient 

is given by: 





where V is the velocity of the aircraft in ft./sec. 

The bending frequencies are assumed to be normally distributed with 

the following means and variances: 

'The damping ratios of both bending modes are equal with: 

The effect of the bending motion on the measured pitch angle 

and pitch rate is given by: 

and 



where X and Xb are the slopes of the bending modes at the location 
b n 
I L 

0.: the gyros, given by: 

The transfer function, describing the pitch response of the rigid 

vei?ic.le to an incremental deflection of the elevator, can be obtained 

fron Equation (5.15) as: 

T k e  transfer function of the actuator is given by: 

acd the transfer functions of the bending deflections are obtained 

Ezom Equation (5.17) as: 



The design of the attitude control system will be considered 

for the flight condition corresponding to the following Mach number and 

dynamic pressure: M = 1.03 and q = 1160 lbs./ft? The corresponding 

mean values of the dimensional coefficients are given by: 

- - 1 
Z 6  = -0.459 sec. 
e 

- - 1 
Ma = -46.0 sec. 

- -I 
M6 = -45.9 sec. 
e 

- 1 Ei = -2.275 sec. 

The covariance matrix of the uncertainties in these coefficients is 

then easily obtained from Table 5.3 by substitution of these v a l u e s ,  

The desired response of the system to an input command as sensed by 

the attitude gyro is described by a fifth order reference model whose 

transfer function is given by: 

This is basically a third order model, which describes the dominant 

behaviour of the desired response. Its pole locations were determined 

from normalized step responses for third order systems as given in 

Reference 151. A second order mode is then added in order to account 

for the bending motion which is required to be stable and well-damped 

for two standard deviations of the bending frequencies wb and w 
7 b, 
I L 

from their respective nominal values. The frequency of this model 

bending mode is chosen to be equal to the frequency of the first 

bending mode of the aircraft, but a damping ratio of 5 = - 3  is 



specified. A desired pole location of the second bending mode is not 

included in the model, since the contribution of this mode to the 

response is likely to be insignificant as long as it is stable. The 

weighring matrix - Q is easily determined from the coefficients of the 
model as before. 

A block diagram of the system is shown in Figure 5-14. Both 

pitch angle and pitch rate are fed back, but additional compensation 

is required to stabilize the system. This may be verified from 

Glgure 5.15 which shows the root-locus for this system for an equal 

 sin of the two feedback signals but without any compensation. The 

first bending mode is seen to be marginally stable or unstable in 

this case. In the interest of simplicity it was decided to use a lag 

i;leer in an attempt to stabilize this mode, The root-locus departure 

a~gles of the first bending poles cannot be changed in this manner, 

kcx~~ever,  without affecting the departure angle of the poles of the 

second bending mode. For this reason it was found necessary to use 

=:JJ@ second order lags in order to stabilize both bending modes 

simultaneously. The transfer function of this filter is given by: 

;&ere the damping ratios have been chosen, leaving the natural 

.frequencies as free design parameters. A lead-lag is also added in 

or5e.r to counteract the adverse effect of the bending filters on the 

second order rigid vehicle mode. The pole and zero locations of the 

lea.2-lag are both designated as free design parameters, Thus, six 

free design parameters must be selected by the design process: 





Figure  5.15. Root locus  wi th  equa l  p i t c h  and p i t c h  
r a t e  g a i n s  b u t  wi thou t  compensation. 



p1 = static sensitivity of compensation 

p2 = gain of rate feedback 

p3 = first bending filter frequency 

p4 = second bending filter frequency 

p5 = zero location of lead-lag 

p6 = pole location of lead-lag 

From Figure 5.14 the complete system may be observed to have 13 pales 

and 6 zeros. 

5.5.1 Sensitivity to Variations of w and w 
bl b2 

First the nominal design was obtained by minimizing the nominal 

value of the performance index with respect to the free design 

parameters setting E = 0. The value of the sensitivity index due to 

the uncertainties in the bending mode frequencies was also con\puted 

using the following covariance matrix: 

since the uncertainties in w and wb are uncorrelated. The r e s u l t i n g  
bl 2 

parameter and index values are given in Table 5.4 as design no. 1, 

One of the interesting aspects of this solution is the low value 

which is chosen for p3, the natural frequency of the first bending 

filter mode. This value is actually smaller than the natural 

frequency of the rigid body mode. The frequency of the second bending 



Table 5.4 Values of free design parameters and performance 

indices with uncertainties in both wb and wb 1 2 

f:-l.-~er mode, pqr is selected inbetween the bending frequencies. 

The solution which is obtained by minimizing J for ~ = l  is 

ra fer rcd  to as design no. 2. The most significant effect on the 

free dessgn parameters, when compared with design no. 1, is that the 

fxequency of the second bending filter has been decreased by more 

than s ~ n e  Qalf. Other changes are relatively minor with a slight 

Eszrease in static sensitivity and an increased amount of lead-lag 

as shown by the increase in the ratio of p6 to p5. The effect of 

taese changes on the sensitivity index is very significant, however, 

reducing ~ t s  value by a factor of 40. The trade-off between J, and 



Js is quite favourable as indicated by the high value of p. 

The normalized step response of design no. 1 is shown in 

Figure 5.16. The pitch angle response is seen to approximate t l a e  

model response reasonably well, although the system response is 

somewhat slower. A similar agreement is observed for the pitch rate 

response, which indicates a time delaying effect in tkie system 

response. No bending motion can be discerned in the pitch and pitch 

rate responses. The second and third derivatives of the pitch angle 

shcw the effect of the bending motion very clearly, however, as 

lightly damped high frequency oscillations which can be traced to tke 

first bending mode. No signs of the second bending mode can be 

observed. The sensitivity functions in Figure 5-16 are also a good 

indicator of the low damping characteristics of the first bendin5 

mode, The low damping of the structural bending motion is likely to 

be very undesirable from the pilot" point of view and may also 

affect the fatigue life of the structure in the long run. It was 

found that - +20% changes in the first bending frequency did not produce 

any extraordinary changes in the bending response or result in 

additional stability problems. 

The step response of design no. 2 is given in Figure 5.17 which 

shows that the reduction of the sensitivity index has had a major 

effec; on the sensitivity of the system to changes in the first 

bending mode frequency. This can be observed by comparing the 

sensitivity function for designs no. 1 and no. 2 which show that the 

amplitudes for design no. 2 are significantly smaller. The reduction 

in the system's sensitivity to changes in w was achieved by reducing 
1 

the natural frequency of the second bending filter mode from 38.4 

rad./sec. to 15.7 rad./sec. This has a significant effect on the 

first bending mode without affecting the stability of the second 

bending mode. 
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F igure  5 .16.  S tep  response,  des ign no. 1. (cont inued)  
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Figure 5.16. Step response, design no. 1. (continued! 



Figure 5.16. Step response, design no. 1. 
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Figure  5 . 1 7 ,  S t e p  response ,  des ign  no. 2 .  (con. t inued1 



Pitch rate response at gyro station, L=r, 
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Figure 5.17. Step response, design no. 2.(continued) 



Figure 5.17. Step response, design no. 2. 



Comparison of the step responses for the two designs in Figures 

5*i6 and 5-17 shows that the initial part of the pitch angle response 

:as been slightly slowed down by the effort to reduce the sensitivity 

af the system. The change in the settling time is insignificant, 

?>owever, being less than half a second. The important improvement 

-n tkt3 response may be observed from the second and third derivatives 

332 t h e  pitch response. The effect of the bending motion on the 

second derivative has virtually disappeared and is very small in the 

case of the third derivative. The structural response of design no. 2 

:-st therefore, preferable by far to the response of design no. 1. 

5,5,2 Sensitivity to Variation of Dimensional Coefficients 

The uncertainties in the knowledge of the dimensional coefficients 

1s expressed by the covariance matrix in Table 5.3. The corresponding 

sensitivity index for design no. 1 wtis found to be: 

Ib;s is a very small value in comparison to the sensitivity index 

cxhlek was obtained for this design with respect to the bending 

frequencies. No reduction of the sensitivity index was achieved by 

ninirnization of the expected value of the performance index. It is 

ebereiore concluded that design no. 1 corresponds approximately to 

the minimum value of Js in this case, since otherwise rt would be 

oossible to obtain some reduction in its value. 

Figure 5.18 shows the sensitivity functions of the output 

response of design no. 3. with respect to each of the five dimensional 

coefficients. The off-nominal response of the system is also given 

-n F'l.gure 5.19 for two standard deviations of M , which is the most 

critical of these parameters. Since all the dimensional coefficients 



Figure 5.18. Sensitivity of pitch response w . r . t .  

dimensional coefficients 



Figure 5.18. Sensitivity of pitch response with w.r.t. 

dimensional coefficients (continued) 

I. . 0 
-off-nominal 
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Figure 5.19. Off-nominal pitch response, design .no. 1 



are correlated it would be unrealistic to vary only one of them inde- 

pendently. The response in Figure 5.19 is therefore computed 1.y 

using the conditional means of the four remaining coefficients given 

the specified variation of M . ' e 
5.6 Discussion of Results 

The first design example shows that the sensitivity design 

method developed in Chapter 3 can be used effectively in order to 

reduce the effect of parameter uncertainties. Moreover, it may be 

done in a way which is consistent with meeting realistic response 

requirements. Thus, by varying the weighting of the sensitivity 

index it has been found possible to control the sensitivity of this 

system with relatively minor changes in the nominal response. This 

property will of course vary from system to system as indicated by 

the s trade-off parameter. 

The second design example differs from the previous one in 

that the specified uncertainties of the design parameters were not 

found to have a critical effect on the response of the system, The 

uncertainties of the structural bending frequencies were, however, 

found to have a significant effect on the value of the sensitivity 

index. This can be attributed to the light damping of the first 

bending mode. Thus, a moderate variation of that mode can have a 

large cumulative effect when integrated over a long time period, 

Reduction in the sensitivity of this bending mode was achieved by 

increasing the effect of the bending filter at the first bending 

frequency. The sensitivity index, therefore, could be used to detect  

the low damping of the structural response. The reduction of the value 

of this index was found to be an effective tool for suppressing the 

undesirable excitation of this response. 



The low sensitivity of the nominal design to uncertainties in 

the dimensional coefficients was reflected by the small contribution 

of the sensitivity index to the expected value of the performance 

iuzdex, 



APPENDIX A 

Der iva t ion  of Closed-Loop P o l e  S e n s i t i v i t i e s  

I n  o r d e r  t o  d e r i v e  an express ion  f o r  t h e  d e r i v a t i v e  of a closeii- 

loop system p o l e  w i t h  r e s p e c t  t o  an open-loop parameter ,  some r e l a t i o n -  

s h i p  between t h e  open-loop and closed-loop system c h a r a c t e r i s t i c s   nus st 

be used. A p a r t i c u l a r l y  convenient  r e l a t i o n s h i p  o f  t h i s  type  i s  given 

by: 

where GOL i s  t h e  t o t a l  open-loop t r a n s f e r  f u n c t i o n ,  and pi and a r e  
j 

t h e  c l o s e d  and open-loop p o l e s  r e s p e c t i v e l y ,  of  a  s ing le - loop  syszem, 

The v a l i d i t y  of Equation (A-1) should be  c l e a r  from t h e  well-known fact 

t h a t  t h e  ze ros  of  1 + GOL a r e  t h e  closed-loop system p o l e s  and t he  p ~ L e s  

o f  1 + GOL must be t h e  same a s  t h e  po les  of  G i t s e l f .  The syster* 
OL 

i s  a l s o  assumed t o  have a t  l e a s t  one more open-loop p o l e  than  zeros, 

Taking t h e  d e r i v a t i v e  wi th  r e s p e c t  t o  an open-loop parameter ,  

S r  on bo th  s i d e s  of Equation (A-1)  g ives :  

. . 
'd GOL - - - - i=i C a 5  - 1 a E 

a <  n 2-1 (s-Gj) i=l (s-p. ) 
1 

where it i s  assumed t h a t  a l l  t h e  open and closed-loop p o l e s  a r e  distinct, 

Using Equation (A-1) t h i s  equa t ion  can be w r i t t e n :  



M~ltiplying both sides of this equation by (s-p ) and setting s = k Pk 

gives the following result: 

w ? & e r e  only one term due to the left hand side of Equation (A-3) remains. 

The rest of the terms all become zero when s = pk, since pk is distinct 

from the remaining open and closed-loop poles. 

- 
SOL' pjr and 2 can now be substituted for 5 in order to find 

j 
th the sensitivities of the k- closed-loop pole to changes in these 

which is obtained by substituting the following relation: 

T-e sensitivity of p with respect to S is then expressed by: k OL 

S~bstituting 6 for 5 in Equation (A-4) gives: 
j 



(A- 8 1 

where the following expression has been sutstituted for the derivative 

of GOL: 

Substituting the expression for sk in Equation (A-8) then yiel-ds:  
 so^ 

The sensitivity of pk to the open-loop zeros is similarly obtained by 

k replacing 5 by Z which gives the following expression for SZ : 
j ' 7 

(A-LP) 





APPENDIX B 

Calculation of Derivative Matrices 

In order to compute the derivative matrices of Section 4-3 it 

is sufficient to obtain derivatives of the following form: 

where q is a scalar function of the design parameter vectors p - and .- 5: 

G I =  q ( P r  f ( S - 1 )  

For a given set of values of the design parameters, the first 

derivative of q with respect to pi can be approximated by: 

where all the parameters are held constant except for pi, whose 

increment, Opi, is some fraction of its nominal value as an example, 

Similarly: 

An approximate expression for the second derivative of q with 

respect to pi and 5 can then be obtained as follows: 
j 



Equation (B-3)  i s  then used t o  eva lua te  t h e  f i r s t  de r iva t i ve s  i n  

Equation (B-4) which g ives  : 

(B-5) 

I n  order  t o  compute t he se  t h r e e  de r iva t i ve s  of q with  r e spec t  t o  two 

of t he  design parameters it is ,  t he re fo re ,  necessary t o  eva lua te  

e i g h t  d i f f e r e n t  values  of q.  This number can be reduced t o  fou:: by 

using t h e  following approximation: 

This r e s u l t  can then be s u b s t i t u t e d  i n t o  Equation (B-2) t o  give:  

An analogous expression f o r  t h e  d e r i v a t i v e  of q with  r e spec t  t o  5 i s  
j 

obtained by interchanging pi and 5 
j 

Clear ly ,  Equations (B-5) and (B-7) r equ i r e  t h e  same values of q ,  

which only needs t o  be evaluated four  t i m e s ,  The accuracy of t h e  

f i r s t  de r iva t i ve s ,  a s  expressed by Equation (B-7), i s  less than t h a t  



obtained by using Equation (B-2) because of the error introduced by 

Equation (B-6). This deterioration in numerical accuracy must be 

weighed against the reduction in the computation of q, which can be 

important when q is a complicated function of the parameters. When q 

is an element of an n-dimensional vector, these derivatives must be 

found for all possible combinations of the vector components and the 

design parameters. 

If p is a k-dimensional vector and 5 is R-dimensional this - - 
means that n0(k+R) first derivatives and n*kaR second derivatives 

have to be computed. Hence, the savings achieved by using Equation 

(B-7) become relatively smaller as the number of design parameters 

increases. This is reflected by the ratio of the number of evaluations 

needed for determining the first and second derivatives &en these 

are calculated separately. This ratio expresses the additional effort 

required for computing the first derivatives separately and is given by: 

since two values are needed for each first derivative and four for 

each secnnd derivative. For large values of R and k this ratio 

obviously becomes small. 

These approximations have been found to be relatively accurate 

in calculating the derivative matrices of the closed-loop characteristic 

coefficients and the initial condition vector. The increments of the 

design parameters nave been chosen to be 5-10% of the current value 

of these parameters. 





APPENDIX C 

Computer Programs 

The computer programs which a r e  l i s t e d  i n  t h i s  appendix can be 

used t o  determine t h e  minimum of  t h e  expected va lue  of  a q u a d r a t i c  

performance index wi th  r e s p e c t  t o  t h e  s p e c i f i e d  f r e e  des ign  parameters ,  

These programs c o n s i s t  of  a main program and e i g h t  subrou t ines  i n  

a d d i t i o n  t o  u t i l i z i n g  f i v e  s t a n d a r d  subrou t ines  from t h e  IBM Systerni369 

S c i e n t i f i c  Subrout ine  Package. The numerical  techniques  which are  

used w e r e  desc r ibed  i n  d e t a i l  i n  Chapter  4 .  The b a s i c  f u n c t i o n  a f  

each program i s  exp la ined  by comment c a r d s  b u t  some a d d i t i o n a l  

in fo rmat ion  about  t h e s e  programs must be given.  

The MAIN program was developed from a program w r i t t e n  by Rediess 

[ 3 l ]  f o r  minimizing a q u a d r a t i c  performance index f o r  known, determinis- 

t i c  des ign  parameters .  Only t h e  b a s i c  s t r u c t u r e  of  t h e  o r i g i n a l  

program has  been r e t a i n e d  t a k i n g  advantage of t h e  computat ional  

techniques  which w e r e  de r ived  i n  Chapter  4 .  A l l  t h e  i n p u t  d a t a  

r e q u i r e d  i s  read  by t h e  main program us ing  t h e  fo l lowing i n p u t  ca rds :  

Card no. 1: FORMAT (314, F8.4, 18 ,  3F8.4, 1 4 )  

N M K STEP ITMAX H DIL EPS KK 

Card no. 2: FORMAT (5E20.8) 

PAR(1) . . . PAR(K) 

Card no. 3: FORMAT (5320.8) 

ALPHA(1) . . . ALPHA ( N )  

Card no. 4: FORMAT (5320.8) 

~ ( 1 )  . . . R(KK*KK) 
Card no. 5: FORMAT (5E20.8) 

S I ( 1 )  . . . S I  (KK) 



Zxpianntion of t h e  i n p u t  parameters:  

N = o r d e r  of t h e  system 

i% = number of zeros  i n  system t r a n s f e r  func t ion  

STEP = s t e p  s i z e  i n  t h e  d i r e c t i o n  of t h e  g r a d i e n t  
(de f ined  i n  Sec t ion  4 . 4 )  

ITMAX = maximum number of i t e r a t i o n s  of t h e  g r a d i e n t  procedure 

H = minimum improvement i n  performance index f o r  c o n t i n u ~ n g  
t h e  g r a d i e n t  sea rch ,  expressed a s  a  f r a c t i o n  of t h e  
performance index va lue  

DIL = minimum d i f f e r e n c e  between t h e  p r e d i c t e d  and a c t u a l  
changes i n  t h e  performance index,  s p e c i f i e d  a s  a  f r a c t i o n  
of t h e  change p r e d i c t e d  by t h e  f i r s t  o r d e r  approximation 

EPS = weight ing c o e f f i c i e n t  mul t ip ly ing  t h e  s e n s i t i v i t y  index 

KK = number of  v a r i a b l e  des ign parameters 

t h  
P A R ( I 9  = i- f r e e  des ign  parameter 

t h  ALPKAII) = i- c h a r a c t e r i s t i c  c o e f f i c i e n t  of t h e  model i n  t h e  
sys tem's  n-dimensional space 

t h  
R ( 1 )  = i- element of t h e  v a r i a b l e  parameter covar iance  mat r ix  

i n  t h e  g e n e r a l  s t o r a g e  mode 

t h  SI (I)  = i- v a r i a b l e  des ign parameter .  

Ncte t h a t  more than one ca rd  may be requ i red  f o r  t h e  i n p u t  parameters 

cs cards no. 2 t o  no. 5 ,  s i n c e  only f i v e  va lues  can be p u t  on each 

z j r d  as i n d i c a t e d  by t h e  FORMAT s ta tements .  

Much of t h e  MAIN program ou tpu t  i s  se l f -exp lana to ry  except  f o r  

tne fo l lowing : 

@AP, DXP, DAS, DXS, DAPS, DXPS 

"dvh-bel-L a r e  f i r s t  d e r i v a t i v e s  and c r o s s  d e r i v a t i v e s  of a  and x wl th  - -0 

resgect t o  p  and 5 a s  i n d i c a t e d  by t h e  n o t a t i o n .  These q u a n t i t i e s  a r e  
A - 

a:ly p r i n t e d  f o r  t h e  i n i t i a l  va lue  of p ,  The q u a n t i t i e s  - 

PI , DPI , TQX , TQDX 

are p r i n t e d  f o r  each i t e r a t i o n  of t h e  process  and r e p r e s e n t ,  

r e s p e c t i v e l y ,  t h e  value  of t h e  performance index,  t h e  change i n  t h i s  



va lue  a s  a r e s u l t  of t h e  preceding i t e r a t i o n ,  t h e  nominal performmce 

index and t h e  s e n s i t i v i t y  index.  Thus: 

P I  = TQX C EPS*TQDX 

The f u n c t i o n  of  t h e  MAIN program i s  t o  compute t h e  va lue  and t h e  

g r a d i e n t  of t h e  performance index  and change t h e  va lues  of t h e  free 

des ign parameters  i n  an i t e r a t i v e  manner such a s  t o  minimize the val-tse 

of  t h e  performance index.  For t h i s  purpose it uses  t h e  fo l lowing 

subrou t ines :  subrou t ine  SYST which computes a l l  t h e  closed-loop system 

c o e f f i c i e n t s ,  t h e  corresponding i n i t i a l  c o n d i t i o n s ,  and t h e  d e r ~ v a t l ~ ~ e s  

of a l l  t h e s e  q u a n t i t i e s  w i t h  r e s p e c t  t o  - p and - 6. For t h i s  purpose :t 

uses  t h e  s u b r o u t i n e s  ROOPIN, SWEEP, and ROOTS f o r  forming t h e  (2:-osed- 

loop t r a n s f e r  f u n c t i o n  polynomials .  I n  i t s  p r e s e n t  form t h e  RC3CTEN 

program has  f o u r  b a s i c  modes, depending on t h e  s t r u c t u r e  of the b lcck  

diagram. These modes correspond t o  t h e  fo l lowing inpu t /ou tpu t  paths: 



A f i f - r -h  mode which i s  u s e f u l  f o r  i n c l u d i n g  s t r u c t u r a l  modes i s  

re2reseinted by t h e  fo l lowing block diagram: 

Tae node number i s  s p t ~ i f i e d  i n  t h e  ROOTS subrou t ine  by a s t a t ement  

05 t he  form: 

MODE = I 

d;i.?ere I i s  an i n t e g e r .  This  s u b r o u t i n e  a l s o  con ta ins  in fo rmat ion  

about  t h e  open-loop system r o o t s ,  which a r e  s p e c i f i e d  by s t a t ements  

JE t h e  fo l lowing form: 

RE'PX(1) = . . . 
CPPX(1) = ... 
RPZX(1) = . . . 
C P Z X ( 1 )  = . . * 

T:e first two c h a r a c t e r s  i n d i c a t e  a  r e a l  o r  complex p a r t  of t h e  r o o t ,  

tae third c h a r a c t e r  d i s t i n g u i s h e s  po les  and zeros  and t h e  l a s t  c h a r a c t e r  

l a e n t i f i e s  t h e  block t o  which t h e  r o o t  belongs.  Thus X would be 

replaced by A ,  B ,  C ., z t c .  The numbers of r o o t s  i n  each block must, 

f ~ r r h e r r n o r e ,  be  s p e c i f l e d  by s t a t ements  of  t h e  form: 

NPX = ... 
NZX = ... 



r e p r e s e n t i n g  t h e  number of p o l e s  and ze ros  i n  X. I t  should  be noted 

t h a t  a  complex r o o t  p a i r  i s  counted a s  a  s i n g l e  r o o t .  The s t a t i c  

s e n s i t i v i t i e s  of t h e  i n d i v i d u a l  open-loop t r a n s f e r  func t ions  are 

s i m i l a r l y  s p e c i f i e d  by s t a t ements  of  t h e  form: 

SX = ... 
where t h e  second c h a r a c t e r  i d e n t i f i e s  t h e  block.  These open-loop 

po les ,  zeros  and s t a t i c  s e n s i t i v i t i e s  can be w r i t t e n  a s  any func t ions  

of t h e  f r e e  and v a r i a b l e  des ign  parameters .  An example of t h e  ROOTS 

program i s  lnc luded  i n  t h i s  appendix. 

The MAIN program u s e s  t h e  STST and RTRT subrou t ines  t o  compute 

t h e  s o i u t l o n s  of  a l l  t h e  ma t r ix  equa t ions  which must be solved rn 

o r d e r  t o  o b t a i n  t h e  va lue  and g r a d i e n t  of  t h e  performance index,  T tese  

s u b r o u t i n e s  a r e  s t r a i g h t f o r w a r d  mechanizat ions of  t h e  ma t r ix  s o l u t i o n s  

of Chapter  4 .  Some of t h e  e s s e n t i a l  computations a r e  made i n  diauble 

p r e c i s i o n  f o r  inc reased  accuracy.  It may be  necessary  t o  change t h e  

t i m e  s c a l e  of  t h e  system equa t ions  i n  o r d e r  t o  p reven t  an overflow 

o r  underflow dur ing  t h e  i n v e r s i o n  of  t h e  polynomial m a t r i x  i n  STST, 

An overflow i n  t h e  con a t a t i o n  of  i t s  determinant  i n d i c a t e s  t h a t  the 

response  should  be  s l c \ ~ e d  down whereas an underflow r e q u i r e s  a  speec l~c j  

up of t h e  system respo..se. The s c a l i n g  i s  achieved by s c a l i n g  of the 

r o o t s  i n  t h e  ROOTS subrou t ine  wi th  t h e  s t a t i c  s e n s i t i v i t i e s  unc!ianged 

u n l e s s  t h e  block under c o n s i d e r a t i o n  c o n t a i n s  pure  i n t e g r a t i o n  o r  

d i f f e r e n t i a t i o n .  The c o e f f i c i e n t s  of t h e  model must of  course  ~3e 

s c a l e d  by t h e  same amount. 
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C **9&$Lg**g** #*lS *Q*$e**4***8***;3rr$:**sY:*;B:S*&r******** *****************+*****&****** 
C 
C THORGEIR PALSSONp M I T  DEPTs- OF AERONAUTICS AND ASTRONAUTICSI 197% 
L 
C **$*48*%**89 t*****Q*iEc********L****QS**8*W****** **a*************************** 
C 
C 
C SUBROUT I NE SYST 
C 
C PURPOSE 
C 
C CCIMPUTES THE COEFFY CIENTS OF THE CLOSED LOOP TRANSFER FUNCTIONI 
t THE SYSTEM I N I T I A L  CONDITIONS AND THE REQUIRED DERIVATIVES OF THESE 
C QUANTIT IES WITH RESPECT TO THE DESIGN PARAMETERS 
C 
C INPUT PARAMETERS 
C 
C PAR = VECTOR OF FREE DESIGN PARAMETERS 
C S I  = VECTOR OF VARIABLE DESIGN PARAMETERS 
C 
C DUTPUT PARAMETERS 
C 
C ACOF = CLOS ED LOOP DENOMINATOR C O E F F I C I  ENTS 
C BCOF = CLOSED LOOP NUMERATOR f O E F F I C I  E NTS 
C X O  = SYSTEM I N I T I A L  CONDITION VECTOR 
C 
C SURRqUTTNES REQUIRED 
C 
C I NC ON 
C ROCIT1 N 
C 
C **9: 9*98*8%*****1:*******8*+****QS**** ****rtit***+****8***+*8***Iti**rk&****$**$****$ 

C 
C 

SUBREIUTINE S Y S T ( A C O F ~ B C O F , X O I P A R I S I )  
DIMENSION X O ( L O ) , P A R i l O )  r S 1 (  10) gACOF(201  tBCOF(208  
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L 
C WRITTEN BY W I L L I A M  R-a G R I F F I N *  I " I b  DOEPT OF AERO AND ASTRO 
C FEB 3.970 
C 
C & %*$t*tet$ &*+8*t99W**8*********89:09:********** ************ **** ****** 
C  
C SUBROUTINE SWEEP 
C  
C PURPOSE 
C CALCULATES THE C O E F F I C I E N T S  OF A D e E e  G I V E N  T H E  ROOTS 
C 
C USAGE 
C CALL  SWEEP I NRI RPR, CPR9 Dp ND 1 
C 
C D E S C R I P T I O N  OF PARAMETERS 
C NR - NUMBER OF ROOTS I N  (COMPLEX P A I R  = L ROOT) 
C RPR- REAL PART OF ROOT 
C CPR- COMPLEX P A R T  O F  ROOT (CONJUGATE NOT REQUIRED)  
C D - C O E F F I C I E N T S  OUT D ( 1  I=PROD(ROOTS 1 D I N D - T I = - S U M (  ROOTS) 
C D I N D )  =I, 0 
C  ND - NUMBER OF C O E F F I C I E N T S  GUT 
C  
C EXTERNAL ROUT1 NES REQUIRED 
C ABS 
C 
C &***+****P&*8+9898SQ*Q**9r4r**89t**Q**9r*0**************%**************  

C 
SURROi fT INE SWEEP ( NRI RPRo CPR9 Dc ND 3 
D I Y E N S I O N  D (  20) r D 0 (  2 0 ) 9 R P R ( 2 0 1  v C P R ( 2 0 )  

C 
c - - - - - - - - I N I T I A L I Z E  C q E F F I  EhTS  
C 

ND = 1 
DO 100 I = l r 2 0  
D f I I  = 0. 
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C St***9tt(@**$**+%9Q8*8*8**8Q*8t**Ssk.***82&******* *****#*******#**%*** 
P, 
C HERMAN A *  R E D I E S S O  MITI DEP-VI OF A E P C I N A U T I C S  AND A S T R O N A U T I C S  
C MARCH 1968 
C 
C ****&*t*****&***t***3rgr**WI******************** ************ ******** 
C 
C SURRO!JT I N E  SNORM 
C 
C PURPOSE 
C CflMPUTES THE SUP-NORM OF AN N X N  M A T R I X  OR AN N X 1  VECTOR-  
C 
C USAGE 
C CALL S N O R M ( A v R r N *  MS) 
C 
C DESCRIPT ION OF PARAMETERS 
C A - NAME OF M A T R I X  OR VECTOR 
C B - NAME OF THE SUP-NORM OF A 
C N - D I M E N S I O N  OF A 
C MS - ONE D I G I T  NUMBER F3R STORAGE MODE OF A 
C 0 - GENERAL 
C 1 - S Y M M E T R I C  
C 2 - D I A G O N A L  OR VECTOR 
C 
C F U N C T I O N S  R E Q U I R E D  
C A BS 
C 
C ** **+****t*t**tS4****4r**O*********************@*****e****** ******** 
C 

S U B R Q U T I N E  SNORMf A t  R 9 R r M S )  
D I M E N S I O N  A t 1 1  
W U R L E  P R E C I S I O N  A 
B=O. 
I F (  M S - i )  1 0 ~ 1 1 ~  12 

10 L=N*N 
GEI T O  I F  





C * t**808***88t+$$**889tt*** tJ; r*****3**689*#***  *********************************# 
e 
C AN EXAMPLE OF SUBRQUTINE ROOTS FOR A S l  XTH ORDER SYfTEM 
C 
C 
C REMARK 
C 
C NOTE THAT THE S IGN OF THE S T A T I C  S E N S I T I V I T Y  MUST R E  REVERSED 
C F O R  ANY BLOCK WH'ISE TRANSFER FUNCTION HAS AN ODD NUMBER OF 
C ZFROES I N  THE R IGHT HALF CDMPLEX PLANE 
C 
C ********+94*8*****9*8******8t*iP***le***Q:**************+************************ 

C 
C 

SUBROUTINE ROOTS (PAR,SI,HDDEI 
DIMENSION R P P A ( 2 0 )  r C P P A ( 2 0 1 ,  R P Z A ( 2 0 1  pCPZA(2O) ,PAR(  101 
DIMENSI+3N R P Z B { 2 0 )  ,CPZf3(20) RPPB ( 2 0 )  q C P P B i 2 0  1 
DIMENSION R P P P ( l O I ~ C P P P ~ 1 0 ) ~ R P Z P ( l O f q C P Z P ( l O ~  9 S l ( l O )  
DIMENSIDN P P P C ( l 0 )  , C P P C I I O ) p  RPZC (101 r C P Z C I L O )  
DIMENSION RPPD( 1 0 )  qCPPD( 1 0 )  r R P Z D ( 1 0 )  9 C P Z O ~ l O )  
COMYON I ROOT / RPPAqCPPA, RPZA, CPZAq RPPB ,CPP B9RPZBvCPZBq RPPC 9CPPCp 

1RPZC pCPZC,RPPDqCPPD, R P L D q C P Z D v R P P P 9 C P P P ~  RPZP ~ C P Z P ~ S A S S B ,  S C P S D ~ S P ,  
~ N P A , N Z A ~ N P B , N L B I N P C , N Z C , N P D ~ N Z D ~ N P P ~ N Z P  

MODE=2 
NPA=4 
NZA=2 
NPR=O 
NZB= I. 
RPPA(1  I = - . 0 1 1 5 8 * S I  ( 1 )  
C P P A ( l ) = 2 , 3 1 5 * S I ( t  1 
RPPA ( 2 ) = O * L 4 2  
CPPA(2 )=0 .  
RPPA(3)=- ,294 
CPPA(3)=0.  
RPPA(4)=- .707*PAR(3 1 
t P P A ( 4 ) = . 7 0 7 * P A R ( 3 )  
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